版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省衡水市第十三中学高三下学期期末联考数学试题理试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的一个单调递增区间是()A. B. C. D.2.已知锐角满足则()A. B. C. D.3.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.4.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A. B. C.4 D.25.在中,,,,点满足,则等于()A.10 B.9 C.8 D.76.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.457.若复数满足(是虚数单位),则的虚部为()A. B. C. D.8.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()A. B. C. D.9.若为虚数单位,则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.函数的部分图象大致是()A. B.C. D.11.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元12.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)二、填空题:本题共4小题,每小题5分,共20分。13.已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则______________;四棱锥P-ABCD的体积为______________.14.过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为________.15.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为__________.16.在中,角的平分线交于,,,则面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.18.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.19.(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.20.(12分)在三棱柱中,,,,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.21.(12分)已知函数(1)解不等式;(2)若均为正实数,且满足,为的最小值,求证:.22.(10分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【题目详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D【题目点拨】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.2、C【解题分析】
利用代入计算即可.【题目详解】由已知,,因为锐角,所以,,即.故选:C.【题目点拨】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.3、A【解题分析】
先根据奇函数求出m的值,然后结合单调性求解不等式.【题目详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【题目点拨】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.4、D【解题分析】
设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【题目详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.【题目点拨】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.5、D【解题分析】
利用已知条件,表示出向量,然后求解向量的数量积.【题目详解】在中,,,,点满足,可得则==【题目点拨】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.6、B【解题分析】
计算的和,然后除以,得到“5阶幻方”的幻和.【题目详解】依题意“5阶幻方”的幻和为,故选B.【题目点拨】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.7、A【解题分析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【题目详解】因为,所以,所以复数的虚部为.故选A.【题目点拨】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.8、C【解题分析】
设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【题目详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,,解得或或.综上,满足条件的点共有三个.故选:C.【题目点拨】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.9、B【解题分析】
由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解【题目详解】由题意得,因为,,所以在复平面内对应的点位于第二象限.故选:B【题目点拨】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.10、C【解题分析】
判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【题目详解】,函数是奇函数,排除,时,,时,,排除,当时,,时,,排除,符合条件,故选C.【题目点拨】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.11、D【解题分析】
根据折线图、柱形图的性质,对选项逐一判断即可.【题目详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【题目点拨】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.12、D【解题分析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【题目详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【题目点拨】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、90°【解题分析】
易得平面PAD,P点在与BA垂直的圆面内运动,显然,PA是圆的直径时,PA最长;将四棱锥补形为长方体,易得为球的直径即可得到PD,从而求得四棱锥的体积.【题目详解】如图,由及,得平面PAD,即P点在与BA垂直的圆面内运动,易知,当P、、A三点共线时,PA达到最长,此时,PA是圆的直径,则;又,所以平面ABCD,此时可将四棱锥补形为长方体,其体对角线为,底面边长为2的正方形,易求出,高,故四棱锥体积.故答案为:(1)90°;(2).【题目点拨】本题四棱锥外接球有关的问题,考查学生空间想象与逻辑推理能力,是一道有难度的压轴填空题.14、.【解题分析】
先求圆的半径,四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率.【题目详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为.【题目点拨】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.15、【解题分析】
根据图像的平移变换得到函数的解析式,再利用整体思想求函数的值域.【题目详解】函数的图像向右平移个单位得,,,.故答案为:.【题目点拨】本题考查三角函数图像的平移变换、值域的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意整体思想的运用.16、15【解题分析】
由角平分线定理得,利用余弦定理和三角形面积公式,借助三角恒等变化求出面积的最大值.【题目详解】画出图形:因为,,由角平分线定理得,设,则由余弦定理得:即当且仅当,即时取等号所以面积的最大值为15故答案为:15【题目点拨】此题考查解三角形面积的最值问题,通过三角恒等变形后利用均值不等式处理,属于一般性题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)l:,C方程为;(2)=【解题分析】
(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.
(2)利用一元二次方程根和系数关系式的应用求出结果.【题目详解】(1)曲线C的参数方程为(m为参数),两式相加得到,进一步转换为.直线l的极坐标方程为ρcos(θ+)=1,则转换为直角坐标方程为.(2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,,所以=.【题目点拨】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.18、(1);(2)4【解题分析】
(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【题目详解】(1)当时不等式可化为当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,,,,即而当且仅当:,即,即时等号成立∴,综上实数最大值为4.【题目点拨】本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.19、(Ⅰ)(II)【解题分析】
(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;(Ⅱ)因点与点关于坐标原点对称,可得的面积是的面积的两倍,再由当时,的面积取到最大值,可得,进而可得原点到直线的距离,再由点到直线的距离公式,以及(I)的结果,即可求解.【题目详解】(I)由,得,则化简整理,得;(Ⅱ)因点与点关于坐标原点对称,故的面积是的面积的两倍.所以当时,的面积取到最大值,此时,从而原点到直线的距离,又,故.再由(I),得,则.又,故,即,从而,即.【题目点拨】本题主要考查直线与椭圆的位置关系,以及椭圆的简单性质,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于中档试题.20、(1)证明见解析;(2).【解题分析】
(1)要证明平面平面,只需证明平面即可;(2)取的中点D,连接BD,以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,分别计算平面的法向量为与平面的法向量为,利用夹角公式计算即可.【题目详解】(1)在中,,所以,即.因为,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由题意知,四边形为菱形,且,则为正三角形,取的中点D,连接BD,则.以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,则,,,,.设平面的法向量为,且,.由得取.由四边形为菱形,得;又平面,所以;又,所以平面,所以平面的法向量为.所以.故.【题目点拨】本题考查面面垂直的判定定理以及利用向量法求二面角正弦值的问题,在利用向量法时,关键是点的坐标要写准确,本题是一道中档题.21、(1)或(2)证明见解析【解题分析】
(1)将写成分段函数的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,证得不等式成立.【题目详解】(1)当时,恒成立,解得;当时,由,解得;当时,由解得所以的解集为或(2)由(1)可求得最小值为,即因为均为正实数,且(当且仅当时,取“”)所以,即.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程建设项目合作与土地使用权转让合同
- 2024年度国际信用证开证与保兑合同
- 辽宁省沈阳市郊联体2024-2025学年高二上学期期中考试政治试题 含解析
- 第五章2024年度国际货物买卖法下技术开发合同细节3篇
- 对公账户汇款合同模板
- 二零二四年度光伏发电站设计施工合同
- 瓷砖原料供应长期合作协议
- 二零二四年高级轿车买卖及售后服务合同
- 二零二四年度废弃物处理与拆除合同
- 劳动安全卫生专项集体合同(2篇)
- 2023年国家公务员考试《申论》真题(副省卷)及答案解析
- 《品牌推广策划案N》课件
- 2024-2030年全球及中国睡眠无创呼吸机行业需求形势及应用前景预测报告
- 从业人员健康管理管理制度
- 智慧旅游景区建设规划方案
- 代办消防验收合同范本共22024年
- 福建省漳州市十校联盟2024-2025学年高一上学期11月期中考试 数学 含解析
- 电缆隧道施工合同
- 2023年中考英语模拟卷(河南专用)(原卷版)
- 2024-2025学年福建省百校联考高三上学期10月测评物理试题及答案
- 学校管理诊断的基本原理与方法.ppt
评论
0/150
提交评论