版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广州市荔湾区高三下学期第二次校模拟考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知非零向量,满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:2.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8 B.7 C.6 D.43.已知为虚数单位,实数满足,则()A.1 B. C. D.4.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.5.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为()A. B.C. D.6.设,则A. B. C. D.7.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是()A. B. C.16 D.328.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.9.已知是等差数列的前项和,,,则()A.85 B. C.35 D.10.执行下面的程序框图,如果输入,,则计算机输出的数是()A. B. C. D.11.若的展开式中的系数为150,则()A.20 B.15 C.10 D.2512.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线C:()的左、右焦点为,,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为______.14.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.15.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.16.二项式的展开式的各项系数之和为_____,含项的系数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.18.(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.19.(12分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.20.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.21.(12分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.22.(10分)如图在四边形中,,,为中点,.(1)求;(2)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据向量的数量积运算,由向量的关系,可得选项.【题目详解】,,∴等价于,故选:C.【题目点拨】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.2、A【解题分析】
则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【题目详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【题目点拨】本小题主要考查正方体有关计算,属于基础题.3、D【解题分析】,则故选D.4、A【解题分析】
根据焦点到渐近线的距离,可得,然后根据,可得结果.【题目详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【题目点拨】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.5、C【解题分析】
将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【题目详解】依题意,则,当时,,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【题目点拨】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.6、C【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7、A【解题分析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.8、D【解题分析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【题目详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【题目点拨】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.9、B【解题分析】
将已知条件转化为的形式,求得,由此求得.【题目详解】设公差为,则,所以,,,.故选:B【题目点拨】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.10、B【解题分析】
先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【题目详解】本程序框图的功能是计算,中的最大公约数,所以,,,故当输入,,则计算机输出的数是57.故选:B.【题目点拨】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.11、C【解题分析】
通过二项式展开式的通项分析得到,即得解.【题目详解】由已知得,故当时,,于是有,则.故选:C【题目点拨】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.12、B【解题分析】
设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【题目详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【题目点拨】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由已知得即,,可解得,由在双曲线C上,代入即可求得双曲线方程,然后求得直线的方程与双曲线方程联立求得点A坐标,借助,即可解得所求.【题目详解】由已知得,又,,所以,解得或,由在双曲线C上,所以或,所以或(舍去),因此双曲线C的方程为.又,所以线段的方程为,与双曲线C的方程联立消去x整理得,所以,,所以点A坐标为,所以.【题目点拨】本题主要考查直线与双曲线的位置关系,考查双曲线方程的求解,考查求三角形面积,考查学生的计算能力,难度较难.14、【解题分析】
化简得到,,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.【题目详解】,即,,故.根据余弦定理:,即.当时等号成立,故.故答案为:.【题目点拨】本题考查了三角恒等变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.15、【解题分析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.16、【解题分析】
将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【题目详解】将代入二项式可得展开式各项系数和为.二项式的展开式通项为,令,解得,因此,展开式中含项的系数为.故答案为:;.【题目点拨】本题考查了二项式定理及二项式展开式通项公式,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解题分析】
(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.【题目详解】(1)解:因为函数的图象恒在的图象的下方,所以在区间上恒成立.设,其中,所以,其中,.①当,即时,,所以函数在上单调递增,,故成立,满足题意.②当,即时,设,则图象的对称轴,,,所以在上存在唯一实根,设为,则,,,所以在上单调递减,此时,不合题意.综上可得,实数的取值范围是.(2)证明:由题意得,因为当时,,,所以.令,则,所以在上单调递增,,即,所以,从而.由(1)知当时,在上恒成立,整理得.令,则要证,只需证.因为,所以在上单调递增,所以,即在上恒成立.综上可得,对任意,都有成立.【题目点拨】本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.18、(1)或;(2)见解析【解题分析】
(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.【题目详解】(1)由条件可知直线的斜率存在,则可设直线的方程为,则,由,有,所以,由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,故所求直线方程为或.(也可联立直线与椭圆方程,由验证)(2)设,则,直线的方程为.由得,由,解得,,当时,,故直线恒过定点.【题目点拨】此题考查的是直线与椭圆的位置关系中的过定点问题,计算过程较复杂,属于难题.19、(Ⅰ)或(Ⅱ)12【解题分析】
(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.【题目详解】(1)设数列的公比为,,,或.(2)时,,解得;时,,无正整数解;综上所述.【题目点拨】本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.20、(1);(2)见解析【解题分析】
(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【题目详解】(1),由,记,,由,且时,,单调递减,,时,,单调递增,,由题意,方程有两个不同解,所以;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为,记,则,因为,所以,所以时,,单调递减,时,,单调递增,所以,即函数的极大值不小于1.解法二:由(1)知,在区间上存在极大值点,且,所以的极大值为,因为,,所以.即函数的极大值不小于1.【题目点拨】本题考查导数研究函数的单调性,极值,考查学生综合分析能力与转化能力,是一道中档题.21、(1)(2)【解题分析】
(1)利用零点分段法,求得不等式的解集.(2)先求得,即,再根据“的代换”的方法,结合基本不等式,求得的最小值.【题目详解】(1)当时,,即,无解;当时,,即,得;当时,,即,得.故所求不等式的解集为.(2)因为,所以,则,.当且仅当即时取等号.故的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合肥工业学校2025年食堂食品安全监测与风险评估承包合同2篇
- 2025年度家具定制代加工合同标准4篇
- 二零二五年矿山采矿权转让与安全生产责任合同3篇
- 二零二五年度科技创新股权代持转让合同2篇
- 2025年度厂房生产环保设备采购合同范本8篇
- 2025年食堂临时工聘用合同全新修订版发布6篇
- 2025年度智能化农业设备生产承包加工合同4篇
- 二零二五年度大米产业链保险服务合同4篇
- 个性化教育服务合同参考(2024年)版B版
- 二零二五版货车驾驶员劳动合同范本:工作环境与条件3篇
- 企业内部客供物料管理办法
- 妇科临床葡萄胎课件
- 药学技能竞赛标准答案与评分细则处方
- 2025届高考英语 716个阅读理解高频词清单
- 报建协议书模板
- 汽车配件购销合同范文
- 贵州省2024年中考英语真题(含答案)
- 施工项目平移合同范本
- (高清版)JTGT 3360-01-2018 公路桥梁抗风设计规范
- 胰岛素注射的护理
- 云南省普通高中学生综合素质评价-基本素质评价表
评论
0/150
提交评论