2023-2024学年贵州安龙县九年级数学第一学期期末经典试题含解析_第1页
2023-2024学年贵州安龙县九年级数学第一学期期末经典试题含解析_第2页
2023-2024学年贵州安龙县九年级数学第一学期期末经典试题含解析_第3页
2023-2024学年贵州安龙县九年级数学第一学期期末经典试题含解析_第4页
2023-2024学年贵州安龙县九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年贵州安龙县九年级数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列运算中,正确的是().A.2xx2 B.x2yyx2 C.xx42x D.2x36x32.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处3.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥14.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.35.将半径为5cm的圆形纸片沿着弦AB进行翻折,弦AB的中点与圆心O所在的直线与翻折后的劣弧相交于C点,若OC=3cm,则折痕AB的长是()A. B. C.4cm或6cm D.或6.把图1的正方体切下一个角,按图2放置,则切下的几何体的主视图是()A. B. C. D.7.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πcm B.4πcm C.6πcm D.8πcm8.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m9.抛物线y=ax2+bx+c图像如图所示,则一次函数y=-bx-4ac+b2与反比例函数在同一坐标系内的图像大致为()A. B. C. D.10.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2π B.3π C.4π D.π11.若二次函数的x与y的部分对应值如下表,则当时,y的值为xy353A.5 B. C. D.12.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处二、填空题(每题4分,共24分)13.在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为______.14.关于x的一元二次方程x2﹣mx﹣2=0的一个根为﹣1,则m的值为________.15.点A(﹣5,y1),B(3,y2)都在双曲线y=,则y1,y2的大小关系是_____.16.如图,矩形纸片中,,,将纸片沿折叠,使点落在边上的处,折痕分别交边、于点、,且.再将纸片沿折叠,使点落在线段上的处,折痕交边于点.连接,则的长是______.17.在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的⊙P的圆心P从点A(4,m)出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.18.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是___________°.三、解答题(共78分)19.(8分)如图,△ABC的高AD、BE相交于点F.求证:.20.(8分)(1)计算:(2)解方程):21.(8分)如图,抛物线交轴于、两点,交轴于点,点的坐标为,直线经过点、.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接,当直线与直线的一个夹角等于的3倍时,请直接写出点的坐标.22.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交线段CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在个满足题意的点.23.(10分)在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).(1)求一次函数和反比例函数的表达式;(2)直接写出关于x的不等式2x+b>的解集;(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.24.(10分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.(参考数据:,,,,,)25.(12分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.26.如图,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以O点为位似中心,在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)如果△OBC内部一点M的坐标为(x,y),写出B,C,M的对应点B′,C′,M′的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A.2xxx,故本选项错误,B.x2yyx2,故本选项正确,C.,故本选项错误,D.,故本选项错误.故选B.【点睛】此题考查幂的乘方与积的乘方、合并同类项、同底数幂的除法,解题关键在于掌握运算法则.2、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.

故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.3、C【分析】根据一元二次方程的根的判别式列不等式求解.【详解】解:∵方程有实数根∴△=4-4a≥0,解得a≤1故选C.【点睛】本题考查一元二次方根的判别式,熟记公式正确计算是本题的解题关键.4、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.5、D【分析】分两种情况讨论:AB与C点在圆心同侧,AB与C点在圆心两侧,根据翻折的性质及垂径定理和勾股定理计算即可.【详解】如图:E是弦AB的中点是直角三角形,沿着弦AB进行翻折得到在中如图:E是弦AB的中点是直角三角形沿着弦AB进行翻折得到在中故选:D【点睛】本题考查的是垂径定理,掌握翻折的性质及垂径定理并能正确的进行分类讨论画出图形是关键.6、B【分析】根据主视图的定义,画出图2的主视图进行判断即可.【详解】根据主视图的定义,切下的几何体的主视图是含底边高的等边三角形(高为虚线),作出切下的几何体的主视图如下故答案为:B.【点睛】本题考查了立体几何的主视图问题,掌握主视图的定义和作法是解题的关键.7、B【解析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,

∵大圆的一条弦AB与小圆相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的长==4π,

故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.8、A【分析】根据BC的长度和的值计算出AC的长度即可解答.【详解】解:因为,又BC=30,所以,,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.9、D【详解】解:由二次函数y=ax2+bx+c的图象开口向上可知,a>0,因为图象与y轴的交点在y轴的负半轴,所以c<0,根据函数图象的对称轴x=﹣>0,可知b<0根据函数图象的顶点在x轴下方,可知∴4ac-b2<0有图象可知f(1)<0∴a+b+c<0∵a>0,b<0,c<0,ac<0,4ac-b2<0,a+b+c<0∴一次函数y=-bx-4ac+b2的图象过一、二、三象限,故可排除B、C;∴反比例函数的图象在二、四象限,可排除A选项.故选D考点:函数图像性质10、A【分析】连接OC、OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可.【详解】解:连接OC、OB∵六边形ABCDEF为正六边形,∴∠COB==60°,∵OA=OB∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为:.故选:A.【点睛】此题考查了扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,解题的关键是掌握扇形的弧长公式.11、D【分析】由表可知,抛物线的对称轴为,顶点为,再用待定系数法求得二次函数的解析式,再把代入即可求得y的值.【详解】设二次函数的解析式为,当或时,,由抛物线的对称性可知,,,把代入得,,二次函数的解析式为,当时,.故选D.【点睛】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为,顶点为,是本题的关键.12、D【解析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.二、填空题(每题4分,共24分)13、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,∵为边作第一个等边三角形,∴BO=1,过B作x轴的垂线交x轴于点D,由可得,即,∴,,即B的横轴坐标为,∵与轴平行,∴将代入分别两个解析式可以求出,∵,∴,即相邻两个三角形的相似比为2,∴第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.14、1【解析】试题分析:把x=-1代入方程得:(-1)2+m﹣2=0,解得:m=1.故答案为:1.15、y1<y1【分析】根据反比例函数图象上的点的坐标满足函数解析式,即可得到y1,y1的值,进而即可比较大小.【详解】∵点A(﹣5,y1),B(3,y1)都在双曲线y=上,当x=﹣5时,y1=﹣,当x=3时,y1=,∴y1<y1.故答案是:y1<y1.【点睛】本题主要考查反比例函数图象上点的纵坐标大小比较,掌握反比例函数图象上的点的坐标满足函数解析式,是解题的关键.16、【分析】过点E作EG⊥BC于G,根据矩形的性质可得:EG=AB=8cm,∠A=90°,,然后根据折叠的性质可得:cm,,,,根据勾股定理和锐角三角函数即可求出cos∠,再根据同角的余角相等可得,再根据锐角三角函数即可求出,从而求出,最后根据勾股定理即可求出.【详解】过点E作EG⊥BC于G∵矩形纸片中,,,∴EG=AB=8cm,∠A=90°,根据折叠的性质cm,,,∴BF=AB-AF=3cm根据勾股定理可得:cm∴cos∠∵,∴∴解得:cm∴AE=10cm,∴ED=AD-AE=2cm∴∴根据勾股定理可得:故答案为:.【点睛】此题考查的是矩形的性质、折叠的性质、勾股定理和锐角三角函数,掌握矩形的性质、折叠的性质、用勾股定理和锐角三角函数解直角三角形是解决此题的关键.17、1,3,5【分析】设⊙P与坐标轴的切点为D,根据一次函数图象上点的坐标特征可得出点A、B、C的坐标,即可求出AB、AC的长,可得△OBC是等腰直角三角形,分⊙P只与x轴相切、与x轴、y轴同时相切、只与y轴相切三种情况,根据切线的性质和等腰直角三角形的性质分别求出AP的长,即可得答案.【详解】设⊙P与坐标轴的切点为D,∵直线y=x-2与x轴、y轴分别交于点B、C,点A坐标为(4,m),∴x=0时,y=-2,y=0时,x=2,x=4时,y=2,∴A(4,2),B(2,0),C(0,-2),∴AB=2,AC=4,OB=OC=2,∴△OBC是等腰直角三角形,∠OBC=45°,①如图,当⊙P只与x轴相切时,∵点D为切点,⊙P的半径为1,∴PD⊥x轴,PD=1,∴△BDP是等腰直角三角形,∴BD=PD=1,∴BP=,∴AP=AB-BP=,∵点P的速度为个单位长度,∴t=1,②如图,⊙P与x轴、y轴同时相切时,同①得PB=,∴AP=AB+PB=3,∵点P的速度为个单位长度,∴t=3.③如图,⊙P只与y轴相切时,同①得PB=,∴AP=AC+PB=5,∵点P的速度为个单位长度,∴t=5.综上所述:t的值为1、3、5时,⊙P与坐标轴相切,故答案为:1,3,5【点睛】本题考查切线的性质及一次函数图象上点的坐标特征,一次函数图象上的点的坐标都适合该一次函数的解析式;圆的切线垂直于过切点的直径;熟练掌握切线的性质是解题关键.18、1【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=1°,故答案为1.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.三、解答题(共78分)19、见解析【分析】由题意可证△AEF∽△BDF,可得,即可得.【详解】解:证明:∵AD,BE是△ABC的高,

∴∠ADB=∠AEF=90°,且∠AFE=∠BFD,∴△AEF∽△BDF,∴,

∴.【点睛】本题考查了相似三角形的判定与性质,熟练运用相似三角形的性质是本题的关键.20、(1);(2)【分析】(1)先分别计算二次根式和三角函数值,以及零次幂,再进行计算即可;(2)先根据一元二次方程进行因式分解,即可求解.【详解】解(1)原式===(2)∴∴【点睛】本题考查了实数的运算,一元二次方程的解法,掌握二次根式和三角函数值,以及零次幂、因式分解法一元二次方程是解题的关键.21、(1);(2),点坐标为;(3)点的坐标为,【分析】(1)利用B(5,0)用待定系数法求抛物线解析式;(2)作PQ∥y轴交BC于Q,根据求解即可;(3)作∠CAN=∠NAM1=∠ACB,则∠AM1B=3∠ACB,则NAM1∽ACM1,通过相似的性质来求点M1的坐标;作AD⊥BC于D,作M1关于AD的对称点M2,则∠AM2C=3∠ACB,根据对称点坐标特点可求M2的坐标.【详解】(1)把代入得.∴;(2)作PQ∥y轴交BC于Q,设点,则∵∴OB=5,∵Q在BC上,∴Q的坐标为(x,x-5),∴PQ==,∴==∴当时,有最大值,最大值为,∴点坐标为.(3)如图1,作∠CAN=∠NAM1=∠ACB,则∠AM1B=3∠ACB,∵∠CAN=∠NAM1,∴AN=CN,∵=-(x-1)(x-5),∴A的坐标为(1,0),C的坐标为(0,-5),设N的坐标为(a,a-5),则∴,∴a=,∴N的坐标为(,),∴AN2==,AC2=26,∴,∵∠NAM1=∠ACB,∠NM1A=∠CM1A,∴NAM1∽ACM1,∴,∴,设M1的坐标为(b,b-5),则∴,∴b1=,b2=6(不合题意,舍去),∴M1的坐标为,如图2,作AD⊥BC于D,作M1关于AD的对称点M2,则∠AM2C=3∠ACB,易知ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=,M2纵坐标=,∴M2的坐标是,综上所述,点M的坐标是或.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.22、(1)(2)当时,的长最大(3)【分析】(1)根据待定系数法求解即可;(2)设点的坐标为、点的坐标为,列出,根据二次函数的图象性质求解即可;(3)分以为对角线时、以为对角线时、以为对角线时三种情况进行讨论求解即可.【详解】解:(1)∵抛物线与轴交于、两点∴将、两点代入,得:∴∴抛物线的解析式为:.(2)∵直线与轴交于点,与轴交于点∴点的坐标为,点的坐标为∴∵点的横坐标为∴点的坐标为,点的坐标为∴∵,∴当时,的长最大.(3)∵由(2)可知,点的坐标为:∴以、、、为顶点的四边形是平行四边形分为三种情况,如图:①以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即;②以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即;③以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即.∴综上所述,在(2)的情况下,存在以、、、为顶点的四边形是平行四边形,点的坐标为:、或∴存在个满足题意的点.【点睛】本题考查了二次函数、一次函数和平行四边形的综合应用,涉及到的知识点有待定系数法求解析式、利用一次函数关系式求与坐标轴交点坐标、根据图像信息直接列函数关系式、将二次函数一般式通过配方法转化成顶点式、求当二次函数取最值时的自变量取值、根据平行四边形的性质求得符合要求的点的坐标等,属于压轴题目,有一定难度.23、(1)反比例函数的解析式为y=;(2)不﹣1<x<0或x>3;(3)点P的坐标为(﹣1,﹣6)或(5,).【分析】(1)将点A,点C坐标代入一次函数解析式y=2x+b,可得b=-4,m=-6,将点C坐标代入反比例函数解析式,可求k的值,即可得一次函数和反比例函数的表达式;

(2)求得直线与反比例函数的交点坐标,然后根据图象求得即可;

(3)由S△ABM=2S△OMP=6,可求AM的值,由点A坐标可求点M坐标,即可得点P坐标.【详解】解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0∴b=﹣4,∴一次函数的解析式为y=2x﹣4将C(﹣1,m)代入直线y=2x﹣4中,得2×(﹣1)﹣4=m∴m=﹣6∴C(﹣1,﹣6)将C(﹣1,﹣6)代入y=,得﹣6=,解得k=6∴反比例函数的解析式为y=;(2)解得或,∴直线AB与反比例函数y=的图象交于点C(﹣1,﹣6)和D(3,2).如图,由图象可知:不等式2x+b>的解集是﹣1<x<0或x>3;(3)∵S△ABM=2S△OMP,∴×AM×OB=6,∴×AM×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论