2023-2024学年广西北部湾经济区数学九年级第一学期期末综合测试试题含解析_第1页
2023-2024学年广西北部湾经济区数学九年级第一学期期末综合测试试题含解析_第2页
2023-2024学年广西北部湾经济区数学九年级第一学期期末综合测试试题含解析_第3页
2023-2024学年广西北部湾经济区数学九年级第一学期期末综合测试试题含解析_第4页
2023-2024学年广西北部湾经济区数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广西北部湾经济区数学九年级第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个点为(3,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=﹣1,x2=1 D.x1=3,x2=﹣52.下列关于三角形的内心说法正确的是()A.内心是三角形三条角平分线的交点B.内心是三角形三边中垂线的交点C.内心到三角形三个顶点的距离相等D.钝角三角形的内心在三角形外3.如图,等边△ABC的边长为6,P为BC上一点,BP=2,D为AC上一点,若∠APD=60°,则CD的长为()A.2 B.43 C.234.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.5.已知点在抛物线上,则下列结论正确的是()A. B. C. D.6.已知一元二次方程,,则的值为()A. B. C. D.7.对于实数,定义运算“*”;关于的方程恰好有三个不相等的实数根,则的取值范围是()A. B.C. D.8.如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:59.如图,在△ABC中,DE∥BC,若=,则的值为()A. B. C. D.10.如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC等于()A.130° B.125° C.120° D.115°11.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<012.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3二、填空题(每题4分,共24分)13.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.14.如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.15.分解因式:3a2b+6ab2=____.16.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2),若点A′(5,6),则A的坐标为______.17.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.18.若m是关于x的方程x2-2x-3=0的解,则代数式4m-2m2+2的值是______.三、解答题(共78分)19.(8分)2019年11月5日,第二届中国国际进口博览会(The2ndChinaInternationallmportExpo)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.(1)求小滕选择.中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.20.(8分)(1)计算:;(2)解方程:=1.21.(8分)甲、乙两个人在纸上随机写一个-2到2之间的整数(包括-2和2).若将两个人所写的整数相加,那么和是1的概率是多少?22.(10分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.23.(10分)如图,等边△ABC中,点D在AC上(CD<AC),连接BD.操作:以A为圆心,AD长为半径画弧,交BD于点E,连接AE.(1)请补全图形,探究∠BAE、∠CBD之间的数量关系,并证明你的结论;(2)把BD绕点D顺时针旋转60°,交AE于点F,若EF=mAF,求的值(用含m的式子表示).24.(10分)某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x元(x为正整数,且x>80).(1)若希望每月的利润达到2400元,又让利给消费者,求x的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25.(12分)在平行四边形ABCD中,点E是AD边上的点,连接BE.(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.26.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.

参考答案一、选择题(每题4分,共48分)1、A【分析】利用抛物线的对称性确定抛物线与x轴的另一个点为(﹣1,0),然后利用抛物线与x轴的交点问题求解.【详解】解:∵抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个点为(1,0),∴抛物线与x轴的另一个点为(﹣1,0),∴关于x的一元二次方程x2﹣2x+m=0的两个实数根是x1=﹣1,x2=1.故选:A.【点睛】本题考查了抛物线与轴的交点:把求二次函数,,是常数,与轴的交点坐标问题转化为解关于的一元二次方程.也考查了二次函数的性质.2、A【分析】根据三角形内心定义即可得到答案.【详解】∵内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,∴A正确,B、C、D均错误,故选:A.【点睛】此题考查三角形的内心,熟记定义是解题的关键.3、B【解析】由等边三角形的性质结合条件可证明△ABP∽△PCD,由相似三角形的性质可求得CD.【详解】∵△ABC为等边三角形,∴∠B=∠C=60又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD∵AB=BC=6,BP=2,∴PC=4,∴2CD∴CD=4故选:B.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.4、C【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.点睛:相似三角形的判定:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两个三角形相似.三组边对应成比例,两个三角形相似.5、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况6、B【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程的两根,∴p+q=,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.7、C【分析】设,根据定义得到函数解析式,由方程的有三个不同的解去掉函数图象与直线y=t的交点有三个,即可确定t的取值范围.【详解】设,由定义得到,∵方程恰好有三个不相等的实数根,∴函数的图象与直线y=t有三个不同的交点,∵的最大值是∴若方程恰好有三个不相等的实数根,则t的取值范围是,故选:C.【点睛】此题考查新定义的公式,抛物线与直线的交点与方程的解的关系,正确理解抛物线与直线的交点与方程的解的关系是解题的关键.8、D【解析】过点D作DF∥CA交BE于F,如图,利用平行线分线段成比例定理,由DF∥CE得到==,则CE=DF,由DF∥AE得到==,则AE=4DF,然后计算的值.【详解】如图,过点D作DF∥CA交BE于F,∵DF∥CE,∴=,而BD:DC=2:3,BC=BD+CD,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴=,故选D.【点睛】本题考查了平行线分线段成比例、平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,熟练掌握相关知识是解题的关键.9、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵=,∴,∵DE∥BC,∴,故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.10、B【分析】根据圆周角定理求出∠BOC=2∠A,求出∠A度数,根据三角形内角和定理求出∠ABC+∠ACB,根据三角形的内心得出∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度数,再求出答案即可.【详解】∵在△ABC中,∠BOC=140°,O是外心,∴∠BOC=2∠A,∴∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵I为△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB==55°,∴∠BIC=180°﹣(∠IBC+∠ICB)=125°,故选:B.【点睛】此题主要考查三角形内心和外心以及圆周角定理的性质,熟练掌握,即可解题.11、A【详解】∵点P1(1,y1)和P2(2,y2)在反比例函数的图象上,∴y1=1,y2=,∴y1>y2>1.故选A.12、A【分析】利用顶点式求二次函数的解析式.【详解】设二次函数y=a(x﹣1)1+2,把(0,11)代入可求出a=-1.故二次函数的解析式为y=﹣1(x﹣1)1+2.故选A.考点:待定系数法求二次函数解析式二、填空题(每题4分,共24分)13、【分析】本题可利用三角形面积×底×高,直接列式求解.【详解】∵直角三角形两直角边可作为三角形面积公式中的底和高,∴该直角三角形面积.故填:.【点睛】本题考查三角形面积公式以及二次根式的运算,难度较低,注意计算仔细即可.14、或.【分析】由可变形为,即比较抛物线与直线之间关系,而直线PQ:与直线AB:关于与y轴对称,由此可知抛物线与直线交于,两点,再观察两函数图象的上下位置关系,即可得出结论.【详解】解:∵抛物线与直线交于,两点,∴,,∴抛物线与直线交于,两点,观察函数图象可知:当或时,直线在抛物线的下方,∴不等式的解集为或.故答案为或.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.15、3ab(a+2b)【分析】观察可得此题的公因式为:3ab,提取公因式即可求得答案.【详解】解:3a2b+6ab2=3ab(a+2b)故答案为:3ab(a+2b)16、(2.5,3)【分析】利用点B(3,1),B′(6,2)即可得出位似比进而得出A的坐标.【详解】解:∵点B(3,1),B′(6,2),点A′(5,6),∴A的坐标为:(2.5,3).故答案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17、1.【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=1°,故答案为:1.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键.18、-1【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,

∴m2-2m-3=0,

∴m2-2m=3,

∴1m-2m2+2

=-2(m2-2m)+2

=-2×3+2

=-1.

故答案为:-1.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.三、解答题(共78分)19、(1);(2).【分析】(1)由于每个国家馆被选择的可能性相同,即可得到中国馆被选中的概率为;(2)画树状图列出所有可能性,即可求出概率.【详解】.解:(1)在这四个国家馆中任选一个参观,每个国家馆被选择的可能性相同∴在这四个国家馆中小滕选择.中国馆的概率是;(2)画树状图分析如下:共有16种等可能的结果,小滕和小刘恰好选择同一国家馆参观的结果有4种∴小滕和小刘恰好选择同一国家馆参观的概率.【点睛】本题考查了树状图求概率,属于常考题型.20、(2)3;(2)x=2或-2.【分析】(2)将特殊角的三角函数值代入及利用零指数幂法则计算即可得到结果;(2)方程移项后,利用因式分解法求出解即可.【详解】解:(2)=4×-2+2×2=2-2+2=3;(2)=2∴或,∴,.【点睛】本题考查了解一元二次方程和特殊角的三角函数值的应用,能熟记特殊角的三角函数值是解(2)小题题的关键,能正确分解因式是解(2)小题题的关键.21、【分析】先画树状图展示所有25种等可能的结果数,再找出两数和是1的结果数,然后根据概率公式求解.【详解】解:画树状为:共25种可能,其中和为1有4种.∴和为1的概率为.【点睛】本题考查了列表法或树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22、(1)144°,1;(2)180;(3).【解析】试题分析:(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.试题解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.23、(1)图形见解析,∠BAE=2∠CBD,理由见解析;(2),理由见解析【分析】(1)根据圆周角和圆心角的关系得:2∠BDH=∠BAE,由等腰三角形的性质得HD∥BC,由平行线的性质可得结论;

(2)如图2,作辅助线,由旋转得:△BDM是等边三角形,证明△AMB≌△CDB(SAS),得AM=CD,∠MAB=∠C=60°,证明△ABD∽△DFE,设AF=a,列比例式可得结论【详解】(1)如图1,∠BAE=2∠CBD.设弧DE与AB交于H,连接DH,∴2∠BDH=∠BAE,又∵AD=AH,AB=AC,∠BAC=60°,∴∠AHD=∠ADH=60°,∠ABC=∠C=60°,∴∠AHD=∠ABC,∴HD∥BC,∴∠DBC=∠HDB,∴∠BAE=2∠DBC;(2)如图2,连接AM,BM,由旋转得:BD=DM,∠BDM=60°,∴△BDM是等边三角形,∴BM=BD,∠MBD=60°,∵∠ABM+∠ABD=∠ABD+∠CBD,∴∠ABM=∠CBD,∵△ABC是等边三角形,∴AB=AC,∴△AMB≌△CDB(SAS),∴AM=CD,∠MAB=∠C=60°,∵∠AGM=∠BGD,∠MAB=∠BDM=60°,∴∠AMD=∠ABD,由(1)知:AD=AE,∴∠AED=∠ADE,∵∠EDF=∠BAD,∴△ABD∽△DFE,∴∠EFD=∠ABD=∠AFM=∠AMD,∴AF=AM=CD,设AF=a,则EF=ma,AE=a+ma=(m+1)a,∴AB=AD+CD=AE+CD=(m+2)a,由△ABD∽△DFE,∴==.【点睛】本题考查全等三角形的性质和判定、相似三角形的判定和性质、等边三角形、三角形内角和和外角的性质等知识,解题的关键灵活应用所学知识解决问题,学会利用辅助线,构建全等三角形解决问题,属于中考常考题型.24、(1)x的值为90;(2)每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元.【解析】(1)直接利用每件利润×销量=2400,进而得出一元二次方程解出答案即可;(2)利用每件利润×销量=利润,先用x表示出每件的利润和销量,进而得出利润关于x的二次函数解析式,再利用二次函数的性质求最值即可.【详解】解:(1)由题意可得:(x﹣60)[100﹣2(x﹣80)]=2400,整理得:x2﹣190x+9000=0,解得:x1=90,x2=100(不合题意舍去),答:x的值为90;(2)设利润为w元,根据题意可得:w=(x﹣60)[100﹣2(x﹣80)]=﹣2x2+380x﹣15600=﹣2(x﹣95)2+2450,故每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元.【点睛】本题考查的是二次函数的实际应用,这是二次函数应用问题中的常见题型,解决问题的关键是根据题意中的数量关系求出函数解析式.25、(1)26;(2)见解析【分析】(1)由平行四边形的性质得出AD=BC=8,AB=CD,AD∥BC,由平行线的性质得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,则AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出结果;(2)连接CE,过点C作CK∥BF交BE于K,则∠FBG=∠CKG,由点G是CF的中点,得出FG=CG,由AAS证得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四边形的性质得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行线的性质得出∠DEC=∠BCE,∠AEB=∠KBC,易证∠EKC=∠D,∠CKB=∠BAE,由AAS证得△AEB≌△KBC,得出BC=BE,则∠KEC=∠BCE,推出∠KEC=∠DEC,由AAS证得△KEC≌△DEC,得出KE=ED,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,∴AD=BC=8,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE=AD﹣ED=BC﹣ED=8﹣3=5,∴AB=5,∴平行四边形ABCD的周长=2AB+2BC=2×5+2×8=26;(2)连接CE,过点C作CK∥BF交BE于K,如图2所示:则∠FBG=∠CKG,∵点G是CF的中点,∴FG=CG,在△FBG和△CKG中,∵,∴△FBG≌△CKG(AAS),∴BG=KG,CK=BF=CD,∵四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论