版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年吉林省吉林市第七中学数学九上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A.50cm B.50cm C.100cm D.80cm2.某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A.米 B.米 C.米 D.米3.若△ABC∽△ADE,若AB=9,AC=6,AD=3,则EC的长是()A.2 B.3 C.4 D.54.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.65.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则的值为()A. B. C. D.6.在中,,,下列结论中,正确的是()A. B.C. D.7.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限8.如图,在中,弦AB=12,半径与点P,且P为的OC中点,则AC的长是()A. B.6 C.8 D.9.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.3210.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A. B.2 C.5 D.1011.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条 B.2条 C.3条 D.4条12.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是()A.; B.; C.; D.以上都不对;二、填空题(每题4分,共24分)13.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:苹果损坏的频率0.1060.0970.1010.0980.0990.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.14.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.15.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.16.若二次函数(为常数)的最大值为3,则的值为________.17.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.18.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.三、解答题(共78分)19.(8分)解答下列问题:(1)计算:;(2)解方程:;20.(8分)如图,海面上一艘船由西向东航行,在处测得正东方向上一座灯塔的最高点的仰角为,再向东继续航行到达处,测得该灯塔的最高点的仰角为.根据测得的数据,计算这座灯塔的高度(结果取整数).参考数据:,,.21.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.23.(10分)一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有1、2、3、4四个数字(每个小球只印有一个数字),小华从布袋里随机摸出一个小球,把该小球上的数字记为,小刚从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为.(1)若小华摸出的小球上的数字是2,求小刚摸出的小球上的数字是3的概率;(2)利用画树状图或列表格的方法,求点在函数的图象上的概率.24.(10分)如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.25.(12分)已知:如图,在⊙O中,弦交于点,.求证:.26.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.
参考答案一、选择题(每题4分,共48分)1、A【分析】连接OA作弦心距,就可以构造成直角三角形.设出半径弦心距也可以得到,利用勾股定理就可以求出了.【详解】解:如图,过点O作于点C,边接AO,,在中,,,解,得AO=50故选:A【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为且,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:根据科学计数法得:.故选:B.【点睛】本题主要考查科学计数法,熟记科学计数法的一般形式是且是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起.3、C【分析】利用相似三角形的性质得,对应边的比相等,求出AE的长,EC=AC-AE,即可计算DE的长;【详解】∵△ABC∽△ADE,∴,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.4、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.5、B【解析】试题分析:∵DE∥BC,∴,∵,∴.故选B.考点:平行线分线段成比例.6、C【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.7、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,
∴反比例函数y=的图象分布在一、三象限.
故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.8、D【分析】根据垂径定理求出AP,连结OA根据勾股定理构造方程可求出OA、OP,再求出PC,最后根据勾股定理即可求出AC.【详解】解:如图,连接OA,∵AB=12,OC⊥AB,OC过圆心O,∴AP=BP=AB=6,∵P为的OC中点,设⊙O的半径为2R,即OA=OC=2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故选:D.【点睛】本题考查了垂径定理和勾股定理,能根据垂径定理求出AP的长是解此题的关键.9、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.10、C【解析】分析:根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故选C.点睛:本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.11、C【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:1.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.12、C【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:
由勾股定理得:AB=,
所以cosB=,sinB=,所以只有选项C正确;
故选:C.【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.二、填空题(每题4分,共24分)13、0.23【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=进价+利润”列方程解答.【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,
所以苹果的损坏概率为0.2.
根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克.
设每千克苹果的销售价为x元,则应有9000x=2.2×20000+23000,
解得x=3.
答:出售苹果时每千克大约定价为3元可获利润23000元.
故答案为:0.2,3.【点睛】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.14、1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.15、15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数16、-1【分析】根据二次函数的最大值公式列出方程计算即可得解.【详解】由题意得,,
整理得,,
解得:,
∵二次函数有最大值,
∴,
∴.
故答案为:.【点睛】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.17、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、2.【分析】在中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在中,再求出AB即可.【详解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案为:2.【点睛】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.三、解答题(共78分)19、(1);(2),【分析】(1)先按照二次根式的乘除法计算,然后去条绝对值,再计算加减法;(2)采用配方法解方程即可.【详解】解:(1)原式;(2)∴,【点睛】本题考查了二次根式的混合运算与解一元二次方程,熟练掌握二次根式的乘除运算法则和配方法是解题的关键.20、这座灯塔的高度约为45m.【分析】在Rt△ADC和Rt△BDC中,根据三角函数AD、BD就可以用CD表示出来,再根据就得到一个关于DC的方程,解方程即可.【详解】解:如图,根据题意,,,,.∵在中,,∴.∵在中,,∴.又,∴.∴.答:这座灯塔的高度约为45m.【点睛】本题考查了解直角三角形的应用-----方向角的问题,列出关于CD的方程是解答本题的关键,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.21、(1);(2),;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【分析】(1)根据题意找到平均每天销售量(箱)与销售价(元/箱)之间的函数关系式;(2)根据题意找到平均每天销售利润W(元)与销售价(元/箱)之间的函数关系式;(3)根据二次函数解析式求最值【详解】解:(1)由题意,得,化简,得.(2)由题意,得,.(3).∵,∴抛物线开口向下.当时,有最大值.又当时,随的增大而增大,∴当元时,的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【点睛】本题考查了二次函数的实际应用和求最值,其中:利润=(售价-进价)×销量22、(1)A(1,0),D(4,3);(2)①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.【分析】(1)由于A、D是直线直线y=x﹣1与抛物线y=﹣x2+6x﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△PAD的面积,可以过P作PE⊥x轴,与AD相交于点E,求得PE,再用△PAE和△PDE的面积和求得结果;②分两种情况解答:过D点作DP∥AC,与抛物线交于点P,求出AC的解析式,进而得PD的解析式,再解PD的解析式与抛物线的解析式联立方程组,便可求得P点坐标;当P点在AD上方时,延长DP与y轴交于F点,过F点作FG∥AC与AD交于点G,则∠CAD=∠FGD=∠PDA,则FG=FD,设F点坐标为(0,m),求出G点的坐标(用m表示),再由FG=FD,列出m的方程,便可求得F点坐标,从而求出DF的解析式,最后解DF的解析式与抛物线的解析式联立的方程组,便可求得P点坐标.【详解】(1)联立方程组,解得,,,∴A(1,0),D(4,3),(2)①过P作PE⊥x轴,与AD相交于点E,∵点P的横坐标为2,∴P(2,3),E(2,1),∴PE=3﹣1=2,∴=3;②过点D作DP∥AC,与抛物线交于点P,则∠PDA=∠CAD,∵y=-x2+6x-5=-(x-3)2+4,∴C(3,4),设AC的解析式为:y=kx+b(k≠0),∵A(1,0),∴,∴,∴AC的解析式为:y=2x-2,设DP的解析式为:y=2x+n,把D(4,3)代入,得3=8+n,∴n=-5,∴DP的解析式为:y=2x-5,联立方程组,解得,,,∴此时P(0,-5),当P点在直线AD上方时,延长DP,与y轴交于点F,过F作FG∥AC,FG与AD交于点G,则∠FGD=∠CAD=∠PDA,∴FG=FD,设F(0,m),∵AC的解析式为:y=2x-2,∴FG的解析式为:y=2x+m,联立方程组,解得,,∴G(-m-1,-m-2),∴FG=,FD=,∵FG=FD,∴=,∴m=-5或1,∵F在AD上方,∴m>-1,∴m=1,∴F(0,1),设DF的解析式为:y=qx+1(q≠0),把D(4,3)代入,得4q+1=3,∴q=,∴DF的解析式为:y=x+1,联立方程组∴,,∴此时P点的坐标为(,),综上,P点的坐标为(0,-5)或(,).【点睛】本题是一次函数、二次函数、三角形的综合题,主要考查了一次函数的性质,二次函数的图象与性质,三角形的面积计算,平行线的性质,待定系数法,难度较大,第(2)小题,关键过P作x轴垂线,将所求三角形的面积转化成两个三角形的面积和进行解答;第(3)小题,分两种情况解答,不能漏解,考虑问题要全面.23、(1);(2)【分析】(1)根据小刚从印有数字1,3,4的三个小球中摸出印有数字3的小球进行求解概率;(2)根据题意画出树状图,进而求解.【详解】解:(1)由题意知,小刚摸出的小球上的数字是3的概率为;(2)画树状图如下:一共有12种等可能情况,有三种情况满足条件,分别为:,,,∴点在函数的图象上的概率为.【点睛】本题考查等可能条件下的概率计算公式,画树状图或列表求解概率,熟知画树状图或列表法是解题的关键.24、1【解析】作OM⊥AB于M,ON⊥CD于N,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 给同事的感谢信汇编十篇
- 简单辞职申请书模板汇编九篇
- 2021过中秋节作文【5篇】
- 八年级物理教学计划模板八篇
- 生物类实习报告模板集锦7篇
- 酒店辞职报告书集锦15篇
- 边城读后感汇编15篇
- 法律法规及事故案例讲座
- 甘肃省定西市岷县2024-2025学年九年级上学期期末质量监测历史试卷(无答案)
- 交管12123驾驶证学法减分题库及答案
- 浪潮云海数据中心管理平台v5.0-快速部署指南v1.0centos
- 管理心理学 - 国家开放大学
- 缺血性肠病完整版本课件
- 汽车起重机基本结构、工作原理课件
- ××领导班子及成员分析研判报告(模板)
- 08S305-小型潜水泵选用及安装图集
- 视频监控室值班记录表
- 四川2020版清单定额
- 教材编写工作总结
- 企业员工上下班交通安全培训(简详共2份)
- 城市高密度建成区合流制溢流污染系统研究-黄孝河机场河水环境综合治理项目实践
评论
0/150
提交评论