北京交通大学数值分析 6微分方程数值解习题课_第1页
北京交通大学数值分析 6微分方程数值解习题课_第2页
北京交通大学数值分析 6微分方程数值解习题课_第3页
北京交通大学数值分析 6微分方程数值解习题课_第4页
北京交通大学数值分析 6微分方程数值解习题课_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微分方程初值问题数值解习题课一、应用向前欧拉法和改进欧拉法求由如下积分所确定的函数y在点x=0.5,1.0,1.5的近似值。解:该积分问题等价于常微分方程初值问题其中h=0.5。其向前欧拉格式为改进欧拉格式为将两种计算格式所得结果列于下表向前欧拉法改进欧拉法000010.50.50.4447021.00.889400.7313731.51.073340.84969二、应用4阶4步阿达姆斯显格式求解初值问题取步长h=0.1.解:4步显式法必须有4个起步值,已知,其他3个用4阶龙格库塔方法求出。本题的信息有:步长h=0.1;结点;经典的4阶龙格库塔公式为算得,,4阶4步阿达姆斯显格式由此算出三、用Euler方法求问步长应该如何选取,才能保证算法的稳定性?解:本题本题的绝对稳定域为得,故步长应满足求梯形方法的绝对稳定域。证明:将Euler公式用于试验方程,得到整理设计算时有舍入误差,则有据稳定性定义,要想,只须因此方法绝对稳定域为复平面的整个左半平面(?),是A-稳定的。五、对初值问题证明:用梯形公式求得的数值解为并证明当步长时,收敛于该初值问题的精确解证明:由梯形公式,有整理,得由此递推公式和初值条件,有,则有在区间上有,步长,由前面结果有由x的任意性,得所证。六。常微分方程初值问题的单步法为试求其局部截断误差主项并回答它是几阶精度的?解该单步公式的局部截断误差是故局部截断误差主项是,方法是一阶的。七、对于微分方程,已知在等距结点处的y的值为,h为步长。试建立求的线性多步显格式与与隐格式。解:取积分区间,对两端积分:对右端作的二次插值并积分得到线性4步显格式若对右端在两点上作线性插值并积分,有由此产生隐格式八、证明线性多步法存在的一个值,使方法是4阶的。解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论