江苏省无锡市新安中学2023-2024学年八年级数学第一学期期末质量检测试题含解析_第1页
江苏省无锡市新安中学2023-2024学年八年级数学第一学期期末质量检测试题含解析_第2页
江苏省无锡市新安中学2023-2024学年八年级数学第一学期期末质量检测试题含解析_第3页
江苏省无锡市新安中学2023-2024学年八年级数学第一学期期末质量检测试题含解析_第4页
江苏省无锡市新安中学2023-2024学年八年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市新安中学2023-2024学年八年级数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为()A.3 B.10 C.6.5 D.3或6.52.在直角坐标系中,函数与的图像大数是()A. B.C. D.3.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.254.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A.①② B.①②④ C.①②③ D.①③④5.若三角形的两边分别是4cm和5cm,则第三边长可能是()A.1cm B.4cm C.9cm D.10cm6.如图,在RtΔABC中,∠ACB=90°,BD是∠ABC的角平分线交AC于点D,DE⊥AB于E①DE=DC②BE=BC③AD=DC④ΔBDE≅ΔBDCA.1个 B.2个 C.3个 D.4个7.等腰三角形的两边分别等于5、12,则它的周长为()A.29 B.22 C.22或29 D.178.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,109.下列计算正确的是()A.x2•x4=x8 B.x6÷x3=x2C.2a2+3a3=5a5 D.(2x3)2=4x610.如图,两车从南北方向的路段的端出发,分别向东、向西行进相同的距离到达两地,若与的距离为千米,则与的距离为()A.千米 B.千米 C.千米 D.无法确定二、填空题(每小题3分,共24分)11.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.12.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.13.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为_________.14.分解因式:=________________.15.分解因式:x-x3=____________.16.在实数范围内分解因式:_______________________.17.一次函数,若随的增大而减小,则点在第______象限.18.在中,,,则面积为_______.三、解答题(共66分)19.(10分)如图,、分别是等边三角形的边、上的点,且,、交于点.(1)求证:;(2)求的度数.20.(6分)如图所示,四边形ABCD中AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由21.(6分)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相较于点A,G,H,D,且∠A=∠D,∠B=∠C.试判断∠1与∠2的大小关系,并说明理由.22.(8分)与是两块全等的含的三角板,按如图①所示拼在一起,与重合.(1)求证:四边形为平行四边形;(2)取中点,将绕点顺时针方向旋转到如图位置,直线与分别相交于两点,猜想长度的大小关系,并证明你的猜想;(3)在(2)的条件下,当旋转角为多少度时,四边形为菱形.并说明理由.23.(8分)“黄金8号”玉米种子的价格5元/kg,如果一次购买10kg以上的种子,超过10kg部分的种子价格打8折.(1)购买8kg种子需付款元;购买13kg种子需付款元.(2)设购买种子x(x>10)kg,付款金额为y元,写出y与x之间的函数关系式.(3)张大爷第一次买了6kg种子,第二次买了9kg种子.如果张大爷一次性购买种子,会少花多少钱?24.(8分)如图1,已知矩形ABCD,连接AC,将△ABC沿AC所在直线翻折,得到△AEC,AE交CD于点F.(1)求证:DF=EF;(2)如图2,若∠BAC=30°,点G是AC的中点,连接DE,EG,求证:四边形ADEG是菱形.25.(10分)解不等式组:;并将解集在数轴上表示出来.26.(10分)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.

参考答案一、选择题(每小题3分,共30分)1、C【分析】分腰长为3和底边长为3两种情况,注意用三角形三边关系验证.【详解】若腰长为3,则底边长为此时三边长为3,3,10∵,不能组成三角形∴腰长为3不成立,舍去若底边长为3,则腰长为此时三角形三边长为6.5,6.5,3,满足三角形三边关系所以等腰三角形的腰长为6.5故选:C.【点睛】本题主要考查等腰三角形的定义及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.2、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.3、A【详解】解:利用勾股定理可得:,故选A.4、B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.【详解】解:∵AD平分∠EAC,

∴∠EAC=2∠EAD,

∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,

∴∠EAD=∠ABC,

∴AD∥BC,∴①正确;

∵AD∥BC,

∴∠ADB=∠DBC,

∵BD平分∠ABC,∠ABC=∠ACB,

∴∠ABC=∠ACB=2∠DBC,

∴∠ACB=2∠ADB,∴②正确;

∵BD平分∠ABC,∠ABC=∠ACB,

∵∠ABC+∠ACB+∠BAC=180°,

当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;

∵∠ADB=∠ABD,

∴AD=AB,

∴AD=AC,故④正确;

故选:B.【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.5、B【分析】根据三角形的三边关系,求出第三边的取值范围,然后得到可能的值.【详解】解:∵三角形的两边分别是4cm和5cm,设第三边为x,则有,∴,∴第三边可能为:4cm;故选:B.【点睛】本题考查了三角形的三边关系,解题的关键是掌握三角形的三边关系进行解题.6、C【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,

∴DE=DC,故①正确;

又∵∠C=∠BEC=90°,BD=BD,

∴Rt△BCD≌Rt△BED(HL),故④正确;

∴BE=BC,故②正确;

∵Rt△ADE中,AD>DE=CD,

∴AD=DC不成立,故③错误;

故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7、A【解析】试题解析:有两种情况:①当腰是12时,三边是12,12,5,它的周长是12+12+5=29;②当腰是5时,三边是12,5,5,∵5+5<12,∴此时不能组成三角形.故选A.考点:1.等腰三角形的性质;2.三角形三边关系.8、B【解析】试题解析:A.

故是直角三角形,故错误;B.

故不是直角三角形,正确;C.

故是直角三角形,故错误;D.

故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.9、D【分析】根据同底数幂的乘法,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【详解】解:A.应为x2•x4=x6,故本选项错误;B.应为x6÷x3=x3,故本选项错误;C.2a2与3a3不是同类项,不能合并,故本选项错误;D.(2x3)2=4x6,正确.故选:D.【点睛】本题考查合并同类项,同底数幂的乘法和除法、积的乘方,熟练掌握运算法则是解题的关键.注意掌握合并同类项时,不是同类项的一定不能合并.10、A【分析】先由条件证明,再根据全等三角形的性质即可得出结论.【详解】解:由题意得:AC=AD,,∴在和中∴∴∴与的距离为千米故选:A.【点睛】本题全等三角形的应用,读懂图信息,将文字语言转化为几何语言是解题关键.二、填空题(每小题3分,共24分)11、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【点睛】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.12、0.1【分析】利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,

∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.13、1.【解析】试题分析:根据比例求出CD的长度,然后根据角平分线上的点到角的两边的距离相等解答.试题解析:∵BC=10,BD:CD=3:2,∴CD=10×=1,过点D作DE⊥AB于点E,∵AD平分∠BAC,且∠C=90°,∴DE=CD=1,∴点D到线段AB的距离为1.考点:角平分线的性质.14、【分析】先提公因式,再利用平方差公式分解即可.【详解】解:故答案为:【点睛】本题考查的是提公因式法与利用平方差公式进行因式分解,掌握因式分解的方法是解题的关键.15、x(1+x)(1-x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【详解】x−x3=x(1−x2)=x(1−x)(1+x).故答案为x(1−x)(1+x).【点睛】本题考查提取公因式法以及公式法分解因式,正确应用公式法是解题关键.16、【分析】先解方程0,然后把已知的多项式写成的形式即可.【详解】解:解方程0,得,∴.故答案为:.【点睛】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键.17、二【分析】根据y随x增大而减小可得m的范围,代入点A坐标,得到点A的横、纵坐标的范围,从而可以判断点A所在象限.【详解】解:∵中y随x增大而减小,∴m+2<0,解得:m<-2,∴m-1<-3,3-m>5,∴点在第二象限.故答案为:二.【点睛】本题考查了一次函数的增减性,解题的关键是根据y随x的增大的变化情况得出m的取值范围.18、60【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB边的高,即可得到答案.【详解】如图作出AB边上的高CD∵AC=BC=13,AB=10,∴△ABC是等腰三角形,∴AD=BD=5,根据勾股定理CD2=AC2-AD2,CD==12,==60,故答案为:60.【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)欲证明CE=BF,只需证得△BCE≌△ABF,即可得到答案;

(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,根据三角形内角和定理求得∠BPC.【详解】(1)证明:如图,是等边三角形,,,在和中,∴,.(2)由(1)知,,∴,即,,即:.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20、证△ABE≌△ADF(AD=AB、AE=AF)【分析】由题中条件AC平分∠BCD,AE⊥BC,AF⊥CD,可得AE=AF,由AB=AD,可由HL判定Rt△ABE≌Rt△ADF,即可得证.【详解】图中△ADF和△ABE全等.∵AC平分∠BCD,AF⊥CD,AE⊥CE;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.21、相等,理由见解析【分析】先推出AB∥CD,得出∠AEC=∠C,再根据∠B=∠C,即可得出∠B=∠AEC,可得CE∥BF,即可证明∠1=∠1.【详解】解:∠1=∠1,理由:∵∠A=∠D,∴AB∥CD,∴∠AEC=∠C,又∵∠B=∠C,∴∠B=∠AEC,∴CE∥BF,∴∠1=∠1.【点睛】本题考查了平行线的判定和性质,掌握知识点是解题关键.22、(1)证明见解析;(2)OP=OQ,证明见解析;(3)90°,理由见解析.【分析】(1)已知△ABC≌△FCB,根据全等三角形的性质可知AB=CF,AC=BF,根据两组对边分别相等的四边形是平行四边形即可得到结论.(2)根据已知利用AAS判定△COQ≌△BOP,根据全等三角形的性质即可得到OP=OQ.(3)根据对角线互相垂直的平行四边形的菱形进行分析即可.【详解】(1)证明:∵△ABC≌△FCB,∴AB=CF,AC=BF.∴四边形ABFC为平行四边形.(2)解:OP=OQ,理由如下:∵OC=OB,∠COQ=∠BOP,∠OCQ=∠PBO,∴△COQ≌△BOP.∴OQ=OP.(3)解:90°.理由:∵OP=OQ,OC=OB,∴四边形PCQB为平行四边形,∵BC⊥PQ,∴四边形PCQB为菱形.【点睛】此题考查学生对平行四边形的判定及性质,全等三角形的判定,菱形的判定等知识的综合运用.23、(1)40,62;(2)y=;(3)5元.【分析】(1)根据题意,可以分别计算出购买3kg和购买6kg种子需要付款的金额;(2)根据题意,可以分别写出0≤x≤5和x>5时对应的函数解析式;(3)先算出张大爷两次购买种子的金额,再算出一次性购买种子需要付款的金额,两次金额相减即可.【详解】解:(1)∵8千克<10千克<13千克,∴购买8kg种子需要付款:5×8=40(元),购买13kg种子需要付款:10×5+(13-10)×5×0.8=62(元),故答案为:40,62;(2)由题意可得,当0≤x≤10时,y=5x,当x>10时,y=10×5+5×0.8(x-10)=4x+10,由上可得,y=;(3)张大爷第一次、第二次购买花的钱总数为6×5+9×5=75(元),张大爷一次性购买种子花的钱为:10×5+(6+9-10)×5×0.8=70(元),少花的钱为:75-70=5(元),答:张大爷一次性购买种子,会少花5元钱.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.24、(1)证明见详解;(2)证明见详解.【分析】(1)根据矩形的性质得到AD=BC,∠D=∠B=90°,由折叠的性质得到∠E=∠B=90°,CE=BC.根据全等三角形的性质即可得到结论;

(2)根据折叠的性质得到∠AEC=∠B=9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论