版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩市一级达标校2024届下学期高三数学试题一模考试试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.62.已知,,若,则实数的值是()A.-1 B.7 C.1 D.1或73.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1 B.2 C.3 D.44.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户5.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.56.已知实数满足则的最大值为()A.2 B. C.1 D.07.已知,,则()A. B. C. D.8.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A. B. C. D.9.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()A. B. C. D.10.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件11.复数满足(为虚数单位),则的值是()A. B. C. D.12.若函数的图象过点,则它的一条对称轴方程可能是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为______.14.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.15.已知i为虚数单位,复数,则=_______.16.若x,y满足,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.(1)求证:OE∥平面PBC;(2)求三棱锥E﹣PBD的体积.19.(12分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:20.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.21.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.22.(10分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【题目详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【题目点拨】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.2、C【解题分析】
根据平面向量数量积的坐标运算,化简即可求得的值.【题目详解】由平面向量数量积的坐标运算,代入化简可得.∴解得.故选:C.【题目点拨】本题考查了平面向量数量积的坐标运算,属于基础题.3、C【解题分析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1.考点:程序框图.4、D【解题分析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【题目详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【题目点拨】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.5、D【解题分析】
根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【题目详解】依题意得,,,因此该双曲线的离心率.【题目点拨】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.6、B【解题分析】
作出可行域,平移目标直线即可求解.【题目详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【题目点拨】考查线性规划,是基础题.7、D【解题分析】
分别解出集合然后求并集.【题目详解】解:,故选:D【题目点拨】考查集合的并集运算,基础题.8、D【解题分析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【题目详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【题目点拨】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.9、C【解题分析】
根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【题目详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【题目点拨】本题考查了橢圆的定义及其性质的简单应用,属于基础题.10、C【解题分析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【题目详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【题目点拨】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.11、C【解题分析】
直接利用复数的除法的运算法则化简求解即可.【题目详解】由得:本题正确选项:【题目点拨】本题考查复数的除法的运算法则的应用,考查计算能力.12、B【解题分析】
把已知点坐标代入求出,然后验证各选项.【题目详解】由题意,,或,,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,,即是对称轴.故选:B.【题目点拨】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积.【题目详解】如图,作,交于,,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:.故答案为:1.【题目点拨】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量.14、4【解题分析】
由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【题目详解】由题意得函数的最小正周期,解得故答案为:4【题目点拨】本题考查正弦型函数周期的应用,考查求正弦型函数中的15、【解题分析】
先把复数进行化简,然后利用求模公式可得结果.【题目详解】.故答案为:.【题目点拨】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.16、5【解题分析】
先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【题目详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【题目点拨】本题考查不含参数的线性规划问题,是基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解题分析】
(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值,求出,即可得答案;(2)根据题意可知,,因为,所以可设直线CD的方程为,将直线代入曲线的方程,利用韦达定理得到的关系,再代入斜率公式可证得为定值.【题目详解】(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值.所以,所以,,故椭圆E的标准方程为.(2)根据题意可知,,因为,所以可设直线CD的方程为.由,消去y可得,所以,即.直线AD的斜率,直线BC的斜率,所以,故为定值.【题目点拨】本题考查椭圆标准方程的求解、椭圆中的定值问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.18、(1)证明见解析(2)【解题分析】
(1)连接OE,利用三角形中位线定理得到OE∥PC,即可证出OE∥平面PBC;(2)由E是PA的中点,,求出S△ABD,即可求解.【题目详解】(1)证明:如图所示:∵点O,E分别是AC,PA的中点,∴OE是△PAC的中位线,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD为菱形,∠BAD=60°,∴S△ABD,∴三棱锥E﹣PBD的体积.【题目点拨】本题考查空间线、面位置关系,证明直线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.19、(I)详见解析;(II)2【解题分析】
(I)求导得到f'(x)=ex-a,讨论a≤0(II)f12=e-12a-5【题目详解】(I)f(x)=ex-ax当a≤0时,f'(x)=e当a>0时,f'(x)=ex-a=0,x=lna当x∈lna,+∞时,综上所述:a≤0时,fx在R上单调递增;a>0时,fx在-∞,ln(II)f(x)=ex-ax-bf12=现在证明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故当x∈0,+∞上时,x2+1f'x在x∈0,+∞上单调递增,故fx在0,12上单调递减,在1综上所述:a+5b的最大值为【题目点拨】本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.20、(Ⅰ);(Ⅱ),证明见解析.【解题分析】
(Ⅰ)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的方程;(Ⅱ)设点,,点,,易求直线的方程为:,令得,,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到.【题目详解】(Ⅰ)解:由题意可知:,解得,椭圆的方程为:;(Ⅱ)证:设点,,点,,联立方程,消去得:,,①,点,,,直线的方程为:,令得,,,,同理可得,,,把①式代入上式得:,为定值.【题目点拨】本题主要考查直线与椭圆的位置关系、定值问题的求解;关键是能够通过直线与椭圆联立得到韦达定理的形式,利用韦达定理化简三角形面积得到定值;考查计算能力与推理能力,属于中档题.21、(1)(2)或【解题分析】
(1)由已知条件得到方程组,解得即可;(2)由题意得直线的斜率存在,设直线方程为,联立直线与椭圆方程,消元、列出韦达定理,由得到的范围,设弦中点坐标为则,所以在轴上方,只需位于内(含边界)就可以,即满足,得到不等式组,解得即可;【题目详解】解:(1)由已知椭圆右焦点坐标为,离心率为,,,所以椭圆的标准方程为;(2)由题意得直线的斜率存在,设直线方程为联立,消元整理得,,由,解得设弦中点坐标为,所以在轴上方,只需位于内(含边界)就可以,即满足,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年潘彭茅艳离婚后同居合同
- 矿山工程监控劳务施工合同范本
- 市政路灯改造工程劳务合同
- 化妆品公司配电房安装合同
- 乳制品公司销售员招聘合同
- 学校就业合同考古学与博物馆学
- 高尔夫球场建设合同
- 道路桥梁养护全站仪租赁协议
- 编程教育机构导师聘用合同
- 港口国际合作服务合同
- 12S4消防工程标准图集
- TCGMA0330012018压缩空气站能效分级指南
- 第-71-讲-原子分数坐标和晶胞投影问题(课件)
- 7.1 集体生活成就我 课件-2024-2025学年统编版道德与法治七年级 上册
- 建设宜居宜业和美乡村
- 职业技能大赛-食品安全管理师竞赛理论知识题及答案
- 农村活动广场实施方案村文化小广场建设的实施方案
- 2024简易租房合同下载打印
- 统编版(2024)道德与法治七年级上册:第二单元《成长的时空》第4-7课教案(8课时)
- 2024-2030年中国船只燃料行业市场发展趋势与前景展望战略分析报告
- 2024年浙江高考技术试题(含答案)
评论
0/150
提交评论