广西南宁市外国语学校2024届高三数学试题查缺补漏试题(文理)_第1页
广西南宁市外国语学校2024届高三数学试题查缺补漏试题(文理)_第2页
广西南宁市外国语学校2024届高三数学试题查缺补漏试题(文理)_第3页
广西南宁市外国语学校2024届高三数学试题查缺补漏试题(文理)_第4页
广西南宁市外国语学校2024届高三数学试题查缺补漏试题(文理)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁市外国语学校2024届高三数学试题查缺补漏试题(文理)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.2.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.3.已知为定义在上的偶函数,当时,,则()A. B. C. D.4.已知集合,则()A. B.C. D.5.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.7.已知向量,若,则实数的值为()A. B. C. D.8.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是()A. B. C. D.9.函数的图像大致为().A. B.C. D.10.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是()A. B.C. D.11.是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____.14.已知一组数据,1,0,,的方差为10,则________15.已知集合,,则_____________.16.执行如图所示的程序框图,则输出的结果是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.18.(12分)在平面直角坐标系中,已知椭圆的左、右顶点分别为、,焦距为2,直线与椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6.(1)求椭圆的标准方程;(2)设直线的斜率分别为.①若,求证:直线过定点;②若直线过椭圆的右焦点,试判断是否为定值,并说明理由.19.(12分)已知动点到定点的距离比到轴的距离多.(1)求动点的轨迹的方程;(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.20.(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、、的表达式;(2)试确定使用哪种运输工具总费用最省.21.(12分)已知,,且.(1)求的最小值;(2)证明:.22.(10分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由题知,又,代入计算可得.【题目详解】由题知,又.故选:D【题目点拨】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.2、A【解题分析】

根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【题目详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【题目点拨】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.3、D【解题分析】

判断,利用函数的奇偶性代入计算得到答案.【题目详解】∵,∴.故选:【题目点拨】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.4、C【解题分析】

由题意和交集的运算直接求出.【题目详解】∵集合,∴.故选:C.【题目点拨】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.5、C【解题分析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.6、A【解题分析】

依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【题目详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【题目点拨】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.7、D【解题分析】

由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【题目详解】解:,,即,将和代入,得出,所以.故选:D.【题目点拨】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.8、D【解题分析】

利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【题目详解】的定义域为,,所以在上递减,在上递增,在处取得极小值也即是最小值,,,,,所以在区间上的最大值为.要使在区间上任取三个实数,,均存在以,,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【题目点拨】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.9、A【解题分析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【题目详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【题目点拨】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.10、A【解题分析】

根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【题目详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,若函数在上没有零点,∴,∴,,解得,又,解得,当k=0时,解,当k=-1时,,可得,.故答案为:A.【题目点拨】本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.11、B【解题分析】

分别判断充分性和必要性得到答案.【题目详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【题目点拨】本题考查了充分必要条件,属于简单题.12、B【解题分析】

根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【题目详解】在上投影为,即又本题正确选项:【题目点拨】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.【题目详解】解:根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,即方程在区间上有解,设函数,其导数,又由,可得:当时,为减函数,当时,为增函数,故函数有最小值,又由;比较可得:,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是;故答案为:;【题目点拨】本题利用导数研究函数在某区间上最值求参数的问题,函数零点问题的拓展.由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.14、7或【解题分析】

依据方差公式列出方程,解出即可.【题目详解】,1,0,,的平均数为,所以解得或.【题目点拨】本题主要考查方差公式的应用.15、【解题分析】

由集合和集合求出交集即可.【题目详解】解:集合,,.故答案为:.【题目点拨】本题考查了交集及其运算,属于基础题.16、1【解题分析】

该程序的功能为利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【题目详解】模拟程序的运行,可得:,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,此时满足条件,退出循环,输出的值为1.故答案为:1.【题目点拨】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,【解题分析】

(1)将点代入椭圆方程得到,结合基本不等式,求得取得最小值时,进而证得椭圆的离心率为.(2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.根据上述分析判断出所求的圆存在,进而求得定圆的方程.【题目详解】(1)证明:∵椭圆经过点,∴,∴,当且仅当,即时,等号成立,此时椭圆的离心率.(2)解:∵椭圆的焦距为2,∴,又,∴,.当直线的斜率不存在时,由对称性,设,.∵,在椭圆上,∴,∴,∴到直线的距离.当直线的斜率存在时,设的方程为.由,得,.设,,则,.∵,∴,∴,∴,即,∴到直线的距离.综上,到直线的距离为定值,且定值为,故存在定圆:,使得圆与直线总相切.【题目点拨】本小题主要考查点和椭圆的位置关系,考查基本不等式求最值,考查直线和椭圆的位置关系,考查点到直线的距离公式,考查分类讨论的数学思想方法,考查运算求解能力,属于中档题.18、(1);(2)①证明见解析;②【解题分析】

(1)由题意焦距为2,设点,代入椭圆,解得,从而四边形的面积,由此能求出椭圆的标准方程.(2)①由题意,联立直线与椭圆的方程,得,推导出,,,,由此猜想:直线过定点,从而能证明,,三点共线,直线过定点.②由题意设,,,,直线,代入椭圆标准方程:,得,推导出,,由此推导出(定值).【题目详解】(1)由题意焦距为2,可设点,代入椭圆,得,解得,四边形的面积,,,椭圆的标准方程为.(2)①由题意,联立直线与椭圆的方程,得,,解得,从而,,,同理可得,,猜想:直线过定点,下证之:,,,,三点共线,直线过定点.②为定值,理由如下:由题意设,,,,直线,代入椭圆标准方程:,得,,,,(定值).【题目点拨】本题考查椭圆标准方程的求法,考查直线过定点的证明,考查两直线的斜率的比值是否为定值的判断与求法,考查椭圆、直线方程、韦达定理等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.19、(1)或;(2)证明见解析,定点【解题分析】

(1)设,由题意可知,对的正负分情况讨论,从而求得动点的轨迹的方程;(2)设其方程为,与抛物线方程联立,利用韦达定理得到,所以,所以直线的方程可表示为,即,所以直线恒过定点.【题目详解】(1)设,动点到定点的距离比到轴的距离多,,时,解得,时,解得.动点的轨迹的方程为或(2)证明:如图,设,,由题意得(否则)且,所以直线的斜率存在,设其方程为,将与联立消去,得,由韦达定理知,,①显然,,,,将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点.【题目点拨】本题主要考查了动点轨迹,考查了直线与抛物线的综合,是中档题.20、(1),,.(2)当时,此时选择火车运输费最省;当时,此时选择飞机运输费用最省;当时,此时选择火车或飞机运输费用最省.【解题分析】

(1)将运费和损耗费相加得出总费用的表达式.(2)作差比较、的大小关系得出结论.【题目详解】(1),,.(2),故,恒成立,故只需比较与的大小关系即可,令,故当,即时,,即,此时选择火车运输费最省,当,即时,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论