青海省海北市2024届高三3月内部考试数学试题_第1页
青海省海北市2024届高三3月内部考试数学试题_第2页
青海省海北市2024届高三3月内部考试数学试题_第3页
青海省海北市2024届高三3月内部考试数学试题_第4页
青海省海北市2024届高三3月内部考试数学试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省海北市2024届高三3月内部考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在展开式中的常数项为A.1 B.2 C.3 D.72.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.13.的展开式中的系数为()A. B. C. D.4.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体5.已知复数满足:,则的共轭复数为()A. B. C. D.6.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.8.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.9.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.10.设i为数单位,为z的共轭复数,若,则()A. B. C. D.11.已知复数,满足,则()A.1 B. C. D.512.若是定义域为的奇函数,且,则A.的值域为 B.为周期函数,且6为其一个周期C.的图像关于对称 D.函数的零点有无穷多个二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:①平面;②四点、、、可能共面;③若,则平面平面;④平面与平面可能垂直.其中正确的是__________.14.已知抛物线的焦点为,过点且斜率为1的直线与抛物线交于点,以线段为直径的圆上存在点,使得以为直径的圆过点,则实数的取值范围为________.15.的展开式中的系数为________.16.抛物线上到其焦点的距离为的点的个数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.18.(12分)某景点上山共有级台阶,寓意长长久久.甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为.为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且.(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率.19.(12分)数列满足,且.(1)证明:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.20.(12分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值21.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.22.(10分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

求出展开项中的常数项及含的项,问题得解。【题目详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【题目点拨】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。2、B【解题分析】

,选B.3、C【解题分析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.4、C【解题分析】

根据基本几何体的三视图确定.【题目详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【题目点拨】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.5、B【解题分析】

转化,为,利用复数的除法化简,即得解【题目详解】复数满足:所以故选:B【题目点拨】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.6、B【解题分析】

分别作出各个选项中的函数的图象,根据图象观察可得结果.【题目详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【题目点拨】本题考查函数单调性和值域的判断问题,属于基础题.7、C【解题分析】

由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【题目详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【题目点拨】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.8、C【解题分析】

设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【题目详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【题目点拨】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.9、C【解题分析】

将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.【题目点拨】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.10、A【解题分析】

由复数的除法求出,然后计算.【题目详解】,∴.故选:A.【题目点拨】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.11、A【解题分析】

首先根据复数代数形式的除法运算求出,求出的模即可.【题目详解】解:,,故选:A【题目点拨】本题考查了复数求模问题,考查复数的除法运算,属于基础题.12、D【解题分析】

运用函数的奇偶性定义,周期性定义,根据表达式判断即可.【题目详解】是定义域为的奇函数,则,,又,,即是以4为周期的函数,,所以函数的零点有无穷多个;因为,,令,则,即,所以的图象关于对称,由题意无法求出的值域,所以本题答案为D.【题目点拨】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.二、填空题:本题共4小题,每小题5分,共20分。13、①③【解题分析】

连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.【题目详解】对于命题①,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,,即,平面,平面,平面,命题①正确;对于命题②,,平面,平面,平面,若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题②错误;对于命题③,连接、,设,则,在中,,,则为等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题③正确;对于命题④,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,显然与不垂直,命题④错误.故答案为:①③.【题目点拨】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.14、【解题分析】

由题意求出以线段AB为直径的圆E的方程,且点D恒在圆E外,即圆E上存在点,使得,则当与圆E相切时,此时,由此列出不等式,即可求解。【题目详解】由题意可得,直线的方程为,联立方程组,可得,设,则,,设,则,,又,所以圆是以为圆心,4为半径的圆,所以点恒在圆外.圆上存在点,使得以为直径的圆过点,即圆上存在点,使得,设过点的两直线分别切圆于点,要满足题意,则,所以,整理得,解得,故实数的取值范围为【题目点拨】本题主要考查了直线与抛物线位置关系的应用,以及直线与圆的位置关系的应用,其中解答中准确求得圆E的方程,把圆上存在点,使得以为直径的圆过点,转化为圆上存在点,使得是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。15、80.【解题分析】

只需找到展开式中的项的系数即可.【题目详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【题目点拨】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.16、【解题分析】

设抛物线上任意一点的坐标为,根据抛物线的定义求得,并求出对应的,即可得出结果.【题目详解】设抛物线上任意一点的坐标为,抛物线的准线方程为,由抛物线的定义得,解得,此时.因此,抛物线上到其焦点的距离为的点的个数为.故答案为:.【题目点拨】本题考查利用抛物线的定义求点的坐标,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在;详见解析【解题分析】

(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【题目详解】(1);(2),若,同号,,不成立;或,异号,,不成立;故不存在实数,,使得,.【题目点拨】本题考查了分段函数的最值、基本不等式的应用,属于基础题.18、见解析【解题分析】

(1)由题可得的所有可能取值为,,,,且,,,,所以的分布列为所以的数学期望.(2)由题可得,所以,又,,所以,所以是以为首项,为公比的等比数列.(3)由(2)可得.19、(1)证明见解析,;(2)【解题分析】

(1)利用,推出,然后利用等差数列的通项公式,即可求解;(2)由(1)知,利用裂项法,即可求解数列的前n项和.【题目详解】(1)由题意,数列满足且可得,即,所以数列是公差,首项的等差数列,故,所以.(2)由(1)知,所以数列的前n项和:==【题目点拨】本题主要考查了等差数列的通项公式,以及“裂项法”求解数列的前n项和,其中解答中熟记等差数列的定义和通项公式,合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力.20、(1)证明见解析(2)【解题分析】

(1)要证明线面平行,需证明线线平行,取的中点,连接,根据条件证明,即;(2)以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,求两个平面的法向量,利用法向量求二面角的余弦值.【题目详解】(1)证明:取的中点,连接.∵,∴为的中点.又为的中点,∴.依题意可知,则四边形为平行四边形,∴,从而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,不妨设,则,,,,,,,,.设平面的法向量为,则,即,令,得.设平面的法向量为,则,即,令,得.从而,故平面与平面所成锐二面角的余弦值为.【题目点拨】本题考查线面平行的证明和空间坐标法解决二面角的问题,意在考查空间想象能力,推理证明和计算能力,属于中档题型,证明线面平行,或证明面面平行时,关键是证明线线平行,所以做辅助线或证明时,需考虑构造中位线或平行四边形,这些都是证明线线平行的常方法.21、(1)证明见解析(2)【解题分析】

(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【题目详解】(1)证明:连接交于,连接,,≌,且,面面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论