江苏省常州市新北区外国语学校2023-2024学年数学八上期末检测试题含解析_第1页
江苏省常州市新北区外国语学校2023-2024学年数学八上期末检测试题含解析_第2页
江苏省常州市新北区外国语学校2023-2024学年数学八上期末检测试题含解析_第3页
江苏省常州市新北区外国语学校2023-2024学年数学八上期末检测试题含解析_第4页
江苏省常州市新北区外国语学校2023-2024学年数学八上期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市新北区外国语学校2023-2024学年数学八上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如果点P在第二象限,那么点Q在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如果正多边形的一个内角是140°,则这个多边形是()A.正十边形 B.正九边形 C.正八边形 D.正七边形3.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,每一个直角三角形的两条直角的长分别是3和4,则中间的小正方形和大正方形的面积比是()A.3:4 B.1:25 C.1:5 D.1:104.丽丽同学在参加演讲比赛时,七位评委的评分如下表:她得分的众数是()评委代号评分A.分 B.分 C.分 D.分5.如图,为内一点,平分,,,若,,则的长为()A.5 B.4 C.3 D.26.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形7.我国的纸伞工艺十分巧妙,如图,伞圈D能沿着伞柄滑动,伞不论张开还是缩拢,伞柄AP始终平分同一平面内所成的角∠BAC,为了证明这个结论,我们的依据是A.SAS B.SSS C.AAS D.ASA8.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为9.现有纸片:4张边长为的正方形,3张边长为的正方形(),8张宽为,长为的长方形,用这15张纸片重新拼出一个长方形,那么该长方形较长的边长为()A. B. C. D.10.如图,在中,,,于,于,则三个结论①;②;③中,()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确11.下列变形,是因式分解的是()A. B.C. D.12.如图,在中,是的垂直平分线,,且的周长为,则的周长为()A.24 B.21 C.18 D.16二、填空题(每题4分,共24分)13.点关于轴对称的点的坐标是,则点坐标为__________14.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3EC,其中正确的结论是_____(填序号).15.在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为_______.16.已知一次函数y=kx+b(k≠0)的图象与x轴交于(﹣5,0),则关于x的一元一次方程kx+b=0的解为_____.17.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为_____.18.如图,将沿着对折,点落到处,若,则__________.三、解答题(共78分)19.(8分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.20.(8分)把下列各式因式分解:(1)(2);21.(8分)如图,在四边形ABCD中,.(1)度;(2)若的角平分线与的角平分线相交于点E,求的度数.22.(10分)如图,在中,,点,的边上,.(1)求证:≌;(2)若,,,求的长度.23.(10分)已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DM⊥AB,DN⊥AC,垂足分别为M、N.求证:BM=CN24.(10分)春节即将来临,根据习俗好多家庭都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进批红灯笼和对联进行销售,已知红灯笼的进价是对联进价的2.25倍,用720元购进对联的数量比用540元购进红灯笼的数量多60件(1)对联和红灯笼的进价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼.已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个.销售一段时间后发现对联售出了总数的,红灯笼售出了总数的.为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?25.(12分)两个工程队共同参与一项筑路工程,若先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?26.如图,已知.(1)画出关于轴对称的;(2)写出关于轴对称的各顶点的坐标.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据第二象限的横坐标小于零可得m的取值范围,进而判定Q点象限.【详解】解:由点P在第二象限可得m<0,再由-3<0和m<0可知Q点在第三象限,故选择C.【点睛】本题考查了各象限内坐标的符号特征.2、B【解析】360°÷(180°-140°)

=360°÷40°

=1.

故选B.3、B【分析】根据勾股定理求得大正方形的边长,然后由正方形的面积公式求得其面积;根据线段间的和差关系求得小正方形的边长,然后由正方形的面积公式求得其面积.【详解】由勾股定理得:大正方形的边长,则大正方形的面积=52=25;

小正方形的边长为:4-3=1,则其面积为:12=1.

∴小正方形和大正方形的面积比是.故选:B.【点睛】本题考查了以弦图为背景的计算题.本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.4、B【分析】一组数据中出现次数最多的数据叫做众数.【详解】这组数据出现次数最多的是1,故这组数据的众数是1.故选:B.【点睛】本题考查了众数的定义,解题时牢记定义是关键.5、A【分析】根据已知条件,延长BD与AC交于点F,可证明△BDC≌△FDC,根据全等三角形的性质得到BD=DF,再根据得AF=BF,即可AC.【详解】解:延长BD,与AC交于点F,∵∴∠BDC=∠FDC=90°∵平分,∴∠BCD=∠FCD在△BDC和△FDC中∴△BDC≌△FDC∴BD=FD=1BC=FC=3∵∴AF=BF∵,,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A【点睛】本题考查的是三角形的判定和性质,全等三角形的对应边相等,是求线段长的依据,本题的AC=AF+FC,AF,FC用已知线段来代替.6、C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.7、B【分析】根据确定三角形全等的条件进行判定即可得解.【详解】解:根据伞的结构,AE=AF,伞骨DE=DF,AD是公共边,

∵在△ADE和△ADF中,∴△ADE≌△ADF(SSS),

∴∠DAE=∠DAF,

即AP平分∠BAC.

故选B.【点睛】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.8、A【解析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、A【分析】先计算所拼成的长方形的面积(是一个多项式),再对面积进行因式分解,即可得出长方形的长和宽.【详解】解:根据题意可得:

拼成的长方形的面积=4a2+3b2+8ab,

又∵4a2+3b2+8ab=(2a+b)(2a+3b),且b<3b,

∴那么该长方形较长的边长为2a+3b.

故选:A.【点睛】本题考查因式分解的应用.能将所表示的长方形的面积进行因式分解是解决此题的关键.10、B【分析】只要证明,推出,①正确;,由,推出,推出,可得,②正确;不能判断,③错误.【详解】在和中∴∴,,①正确∵∴∴∴,②正确在△BRP与△QSP中,只能得到,,不能判断三角形全等,因此只有①②正确故答案为:B.【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、平行线的性质以及判定定理是解题的关键.11、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【详解】A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.12、A【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【详解】∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长为16cm,∴AB+BD+DA=AB+BD+DC=AB+BC=16cm,∴△ABC的周长=AB+BC+AC=16+8=24(cm),故选:A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每题4分,共24分)13、(-3,-1)【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:∵点关于轴对称的点的坐标是,∴点A的坐标为故答案为:.【点睛】此题考查的是关于x轴对称的两点坐标关系,掌握关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数是解决此题的关键.14、①②③④【分析】根据平行线的性质结合三线合一的性质证明△ABC为等腰三角形,即可得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF即可得到DE=DF,CE=BF,故①④正确.【详解】∵BC平分∠ABF,

∴∠FBC=∠ABC,

∵BF∥AC,

∴∠FBC=∠ACB,

∴∠ACB=∠ABC=∠CBF,∴AC=AB,

∴△ABC为等腰三角形,∵AD是△ABC的角平分线,

∴DB=DC,故②正确;AD⊥BC,故③正确;在△CDE与△DBF中,,∴Rt△CDE≌Rt△BDF(ASA),

∴DE=DF,故①正确;CE=BF,∵AE=2BF,∴AE=2CE,AC=AE+CE=2CE+CE=3CE,故④正确;综上,①②③④均正确;

故答案为:①②③④.【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定和性质是解题的关键.15、4或8【分析】分类讨论①当点D在线段BC上,②当点D在线段BC上时,根据对称的性质结合等腰直角三角形的性质分别求得AC、DF=EF=CF的长,从而可求得答案.【详解】①当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAC=∠EAC,∴DF=EF,∠DFC=∠DFA=90,∵,∴,∵AB=AC,∠BAC=90,∴EF=DF=CF=,AB=AC=,∴AF=AC-CF=,DE=EF+DF=,∴;②当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90,∵,∴,∵AB=AC,∠BAC=90,∴DF=EF=CF=,AB=AC=,∴AF=AC+CF=,DE=EF+DF=,∴;故答案为:或.【点睛】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.16、x=﹣1.【分析】根据一次函数图象与x轴交点的横坐标就是对应的关于x的一元一次方程的解,可直接得出答案.【详解】解:∵一次函数y=kx+b(k≠0)的图象与x轴交于(﹣1,0),∴关于x的一元一次方程kx+b=0的解为x=﹣1.故答案为x=﹣1.【点睛】本题考查了一次函数与一元一次方程:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.17、2或4【解析】先求出点C坐标,然后分为两种情况,画出图形,根据等腰三角形的性质求出即可.【详解】∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2;如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为2或4.【点睛】本题考查了一次函数与二元一次方程组、等腰直角三角形等知识,综合性比较强,熟练掌握相关知识、运用分类讨论以及数形结合思想是解题的关键.18、【解析】根据折叠的性质得到∠A′DE=∠ADE,∠A′ED=∠AED,由平角的定义得到∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,根据已知条件得到∠ADE+∠AED=145°,由三角形的内角和即可得到结论.【详解】∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=35°.故答案为35°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.三、解答题(共78分)19、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=,∴点D的坐标为(,),又∵点D在直线y=−2x+1上,∴,解得:k=,∴点D的坐标为(,);综合所述,点D的坐标为(,)或(4,−7)或(,).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.20、(1)(2)【分析】(1)根据题意先提取公因式c,再利用平方差公式进行因式分解即可;(2)由题意先化简合并同类项,进而利用完全平方差公式进行因式分解即可.【详解】解:(1)(2)【点睛】本题考查因式分解,熟练掌握利用提取公因式法和公式法分解因式是解题的关键.21、(1);(2)【分析】(1)根据四边形内角和为360°即可得出答案;(2)先根据角平分线的定义求出的度数,然后利用三角形内角和定理即可得出答案.【详解】(1);(2)∵AE平分,BE平分【点睛】本题主要考查四边形内角和及三角形内角和定理,掌握三角形内角和定理及四边形内角和为360°是解题的关键.22、(1)见解析;(2)2【分析】(1)根据AD=AE可推导出∠AEC=∠ADB,然后用AAS证△ABD≌△ACE即可;(2)根据∠ADE=60°,AD=AE可得△ADE是等边三角形,从得得出DE的长,最终推导出BD的长.【详解】(1)∵AD=AE∴∠ADE=∠AED,∴∠ADB=∠AEC在△ADB和△AEC中∴△ADB≌△AEC(AAS)(2)∵∠ADE=60°,AD=AE∴△ADE是等边三角形∵AD=6,∴DE=6∵BE=8,∴BD=2【点睛】本题考查三角形全等的证明和等边三角形的证明,需要注意,SSA是不能证全等的.23、见解析【分析】先由角平分线性质得到DM=DN,再证Rt△DMB≌Rt△DNC,根据全等三角形对应边相等即可得到答案.【详解】证明:∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN

又∵点D是BC的中点∴BD=CD

,

∴Rt△DMB≌Rt△DNC(HL)∴BM=CN.【点睛】本题主要考查角平分线的性质、三角形全等的判定(AAS、ASA、SSS、SAS、HL),熟练掌握全等三角形的判定是解题的关键.24、(1)对联的进价为8元/件,红灯笼的进价为18元/件;(2)商店最低打5折,才能使总的利润率不低于20%.【分析】(1)设对联的进价为x元,则红灯笼的进价为2.25x元,根据数量=总价÷单价结合用720元购进对联的数量比用540元购进红灯笼的数量多60件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设商店对剩下的商品打y折销售,根据利润=销售总额﹣进货成本结合总的利润率不低于20%,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】解:(1)设对联的进价为x元,则红灯笼的进价为2.25x元,依题意,得:,解得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论