![2024年山东省菏泽一中、单县一中数学高三第一学期期末质量跟踪监视试题含解析_第1页](http://file4.renrendoc.com/view11/M03/08/36/wKhkGWWRpA6AXZDTAAI0OZTxHnk823.jpg)
![2024年山东省菏泽一中、单县一中数学高三第一学期期末质量跟踪监视试题含解析_第2页](http://file4.renrendoc.com/view11/M03/08/36/wKhkGWWRpA6AXZDTAAI0OZTxHnk8232.jpg)
![2024年山东省菏泽一中、单县一中数学高三第一学期期末质量跟踪监视试题含解析_第3页](http://file4.renrendoc.com/view11/M03/08/36/wKhkGWWRpA6AXZDTAAI0OZTxHnk8233.jpg)
![2024年山东省菏泽一中、单县一中数学高三第一学期期末质量跟踪监视试题含解析_第4页](http://file4.renrendoc.com/view11/M03/08/36/wKhkGWWRpA6AXZDTAAI0OZTxHnk8234.jpg)
![2024年山东省菏泽一中、单县一中数学高三第一学期期末质量跟踪监视试题含解析_第5页](http://file4.renrendoc.com/view11/M03/08/36/wKhkGWWRpA6AXZDTAAI0OZTxHnk8235.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年山东省菏泽一中、单县一中数学高三第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.322.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A. B. C. D.3.在复平面内,复数对应的点的坐标为()A. B. C. D.4.正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为()A. B. C. D.5.已知向量,则向量在向量方向上的投影为()A. B. C. D.6.已知等式成立,则()A.0 B.5 C.7 D.137.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.8.已知集合,集合,则()A. B. C. D.9.已知集合,,若AB,则实数的取值范围是()A. B. C. D.10.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件11.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.12.已知函数,.若存在,使得成立,则的最大值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知,,是边的垂直平分线上的一点,则__________.14.已知函数函数,其中,若函数恰有4个零点,则的取值范围是__________.15.已知直线被圆截得的弦长为2,则的值为__16.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,四边形是矩形,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.18.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.19.(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.20.(12分)如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.(1)求证:平面;(2)求二面角的余弦值.21.(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.图:设备改造前样本的频率分布直方图表:设备改造后样本的频率分布表质量指标值频数2184814162(1)求图中实数的值;(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.22.(10分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.2、B【解析】
根据新运算的定义分别得出◆2020和2020★2018的值,可得选项.【详解】由()★★,得(+2)★★,又★,所以★,★,★,,以此类推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此类推,◆2020,所以(◆2020)(2020★2018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.3、C【解析】
利用复数的运算法则、几何意义即可得出.【详解】解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.4、C【解析】
分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,,,则,,由,即,得.所以=,所以当时,的最小值为.故选:C.【点睛】本题考查向量的数量积的坐标表示,属于基础题.5、A【解析】
投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.6、D【解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.7、C【解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵,∴,∵为纯虚数,∴,解得.故选C.【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.8、C【解析】
求出集合的等价条件,利用交集的定义进行求解即可.【详解】解:∵,,∴,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.9、D【解析】
先化简,再根据,且AB求解.【详解】因为,又因为,且AB,所以.故选:D【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.10、D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.11、A【解析】
由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.12、C【解析】
由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,,由于,则,同理可知,,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,,则,,则,构造函数,其中,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
作出图形,设点为线段的中点,可得出且,进而可计算出的值.【详解】设点为线段的中点,则,,,.故答案为:.【点睛】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.14、【解析】∵,∴,∵函数y=f(x)−g(x)恰好有四个零点,∴方程f(x)−g(x)=0有四个解,即f(x)+f(2−x)−b=0有四个解,即函数y=f(x)+f(2−x)与y=b的图象有四个交点,,作函数y=f(x)+f(2−x)与y=b的图象如下,,结合图象可知,<b<2,故答案为.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15、1【解析】
根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得.【详解】解:圆的圆心为(1,1),半径,
因为直线被圆截得的弦长为2,
所以直线经过圆心(1,1),
,解得.故答案为:1.【点睛】本题考查了直线与圆相交的性质,属基础题.16、【解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)取中点,中点,连接,,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,,.设交于,则为的中点,连接.设,则,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,,,,,,,,设平面的法向量为,∴,令得.设平面的法向量为,∴,令得,∴,∴二面角的余弦值为.【点睛】本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)证明见解析,;(2)证明见解析【解析】
(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;(2),求和即可.【详解】(1),,两式相减:①用换,得②②—①,得,即,所以数列是等差数列,又,∴,,公差,所以.(II).【点睛】本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.19、(1),(2)【解析】
试题分析:利用将极坐标方程化为直角坐标方程:化简为ρcosθ+ρsinθ=1,即为x+y=1.再利用点到直线距离公式得:设点P的坐标为(2cosα,sinα),得P到直线l的距离试题解析:解:化简为ρcosθ+ρsinθ=1,则直线l的直角坐标方程为x+y=1.设点P的坐标为(2cosα,sinα),得P到直线l的距离,dmax=.考点:极坐标方程化为直角坐标方程,点到直线距离公式20、(1)证明见解析(2)【解析】
(1)解法一:作的中点,连接,.利用三角形的中位线证得,利用梯形中位线证得,由此证得平面平面,进而证得平面.解法二:建立空间直角坐标系,通过证明直线的方向向量和平面的法向量垂直,证得平面.(2)利用平面和平面法向量,计算出二面角的余弦值.【详解】(1)法一:作的中点,连接,.又为的中点,∴为的中位线,∴,又为的中点,∴为梯形的中位线,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在长方体中,,,两两互相垂直,建立空间直角坐标系如图所示,则,,,,,,,,,,,.(1)设平面的一个法向量为,则,令,则,.∴,又,∵,,又平面,平面.(2)设平面的一个法向量为,则,令,则,.∴.同理可算得平面的一个法向量为∴,又由图可知二面角的平面角为一个钝角,故二面角的余弦值为.【点睛】本小题考查线面的位置关系,空间向量与线面角,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,数形结合思想,化归与转化思想.21、(1)(2)详见解析【解析】
(1)由频率分布直方图中所有频率(小矩形面积)之和为1可计算出值;(2)由频数分布表知一等品、二等品、三等品的概率分别为.,选2件产品,支付的费用的所有取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 疫情下教育变革的启示-学校与医院合作的必要性与优势分析
- 产业协同合同(半紧密型):机遇与挑战
- 产品质量防伪标识供应合同
- 云计算机房租赁合同
- 二手房购买合同(适用于二手房交易)
- 专利技术普通许可合同范本
- 中铁物资商城战略合作合同新范本
- 京石高速改扩建临时用地合作合同
- 三旧改造项目委托代理合同
- 上海市仓储租赁合同标准
- 2025版茅台酒出口业务代理及销售合同模板4篇
- 2025年N1叉车司机考试试题(附答案)
- 《医院财务分析报告》课件
- 2024年考研政治试题及答案
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 天津市部分区2023-2024学年高二上学期期末考试 物理 含解析
- 2025年初级社会工作者综合能力全国考试题库(含答案)
- 2024年潍坊护理职业学院单招职业适应性测试题库附答案
- 社会稳定风险评估报告风险评估参考
- GB/T 14343-2008化学纤维长丝线密度试验方法
- 制冷操作证培训教材-制冷与空调设备运行操作作业培课件
评论
0/150
提交评论