版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市实验繁荣学校2023-2024学年八年级数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.2.下列标志中属于轴对称图形的是()A. B. C. D.3.下列函数中不经过第四象限的是()A.y=﹣x B.y=2x﹣1 C.y=﹣x﹣1 D.y=x+14.若方程组的解中x与y的值相等,则k为()A.4 B.3 C.2 D.15.已知,则的值是()A.6 B.9 C. D.6.已知一个多边形的每个内角都等于,则这个多边形一定是()A.七边形 B.正七边形 C.九边形 D.不存在7.如图点在内,且到三边的距离相等.若,则等于()A. B. C. D.8.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.26,26 B.26,22 C.31,22 D.31,2610.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.已知,,,比较,,的大小关系,用“”号连接为______.12.的绝对值是________.13.比较大小:________.(填“>”,“<”或“=”号)14.计算:_____________.15.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.16.如图,在中,,,以原点为圆心,为半径画弧,交数轴于点,则点表示的实数是_____.17.在RtΔABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD,若BD=2,则AD的长是___.18.命题:“三边分别相等的两个三角形全等”的逆命题________三、解答题(共66分)19.(10分)如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.20.(6分)已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5米/秒.(1)求B车的平均速度;(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.21.(6分)已知:如图,中,,,是的中点,.求证:(1);(2)若,求四边形的面积.22.(8分)八年级为筹备红色研学旅行活动,王老师开车前往距学校180的研学训练营地考察,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了40到达研学训练营地.求王老师前一小时行驶速度.23.(8分)(1)如图①,在△ABC中,∠C=90°,请用尺规作图作一条直线,把△ABC分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.24.(8分)如图,在平面直角坐标系中,直线分别交轴、轴于点和点,且,满足.(1)______,______.(2)点在直线的右侧,且:①若点在轴上,则点的坐标为______;②若为直角三角形,求点的坐标.25.(10分)利用我们学过的知识,可以推导出下面这个形式优美的等式:.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐美、简洁美.(1)请你检验这个等式的正确性;(2)猜想:[].(3)灵活运用上面发现的规律计算:若,,,求的值.26.(10分)如图1,在平面直角坐标系中,点A(a,1)点B(b,1)为x轴上两点,点C在Y轴的正半轴上,且a,b满足等式a2+2ab+b2=1.
(1)判断△ABC的形状并说明理由;
(2)如图2,M,N是OC上的点,且∠CAM=∠MAN=∠NAB,延长BN交AC于P,连接PM,判断PM与AN的位置关系,并证明你的结论.
(3)如图3,若点D为线段BC上的动点(不与B,C重合),过点D作DE⊥AB于E,点G为线段DE上一点,且∠BGE=∠ACB,F为AD的中点,连接CF,FG.求证:CF⊥FG.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据的函数值随的增大而减小,得到k0,由此判定所经过的象限为一、二、三象限.【详解】∵的函数值随的增大而减小,∴k0,∴经过一、二、三象限,A选项符合.故选:A.【点睛】此题考查一次函数的性质,y=kx+b中,k0时图象过一三象限,k0时图象过二四象限;b0时图象交y轴于正半轴,b0时图象交y轴于负半轴,掌握特点即可正确解答.2、C【解析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.3、D【解析】试题解析:A.,图象经过第二、四象限.B.,图象经过第一、三、四象限.C.,图象经过第二、三、四象限.D.,图象经过第一、二、三象限.故选D.4、C【解析】由题意得:x=y,∴4x+3x=14,∴x=1,y=1,把它代入方程kx+(k-1)y=6得1k+1(k-1)=6,解得k=1.故选C.5、B【分析】根据题意,得到,然后根据同底数幂乘法的逆运算,代入计算,即可得到答案.【详解】解:∵,∴,∴;故选:B.【点睛】本题考查了同底数幂的逆运算,解题的关键是熟练掌握运算法则,正确得到.6、A【分析】直接利用多边形内角和定理即可求解.【详解】解:设这个多边形的边数为n,则(n-2)×180°=n解得:n=7故选:A【点睛】本题主要考查多边形内角和定理,关键要掌握多边形内角和定理:n边形的内角和是(n-2)×180°(n≥3,且n为整数).7、A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可得解.【详解】∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵,∴∠ABC+∠ACB=180−50=130,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130=65,在△OBC中,∠BOC=180−(∠OBC+∠OCB)=180−65=115.故选:A.【点睛】本题考查了到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,要注意整体思想的利用.8、D【分析】将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,也是中心对称图形,故选:D.【点睛】此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.9、B【分析】根据中位数,众数的定义进行解答即可.【详解】七个整点时数据为:22,22,23,26,28,30,1.
所以中位数为26,众数为22,
故选:B.【点睛】本题考查了折线统计图,中位数,众数等知识,关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.10、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,
∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,
∵95>92,
∴乙同学最近几次数学考试成绩的平均数高,
∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.
故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.二、填空题(每小题3分,共24分)11、【分析】分别根据有理数乘方的意义、负整数指数幂的运算法则和0指数幂的意义计算a、b、c,进一步即可比较大小.【详解】解:,,,∵,∴.故答案为:.【点睛】本题主要考查了负整数指数幂的运算法则和0指数幂的意义,属于基本题型,熟练掌握基本知识是解题的关键.12、【分析】根据绝对值的意义,即可得到答案.【详解】解:,故答案为:.【点睛】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义.13、<【分析】根据5<9可得即,进而可得,两边同时除以2即可得到答案.【详解】解:∵5<9,∴,即,∴,∴,故答案为:<.【点睛】此题主要考查了二次根式的大小比较,根据5<9可得即,然后利用不等式的基本性质变形即可.14、2【分析】根据有理数的乘方、负整数指数幂和零指数幂等知识点进行计算.【详解】原式=﹣2+9﹣2=2.故答案为:2.【点睛】本题考查了零指数幂、负整数指数幂和乘方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于2.15、56°【解析】根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.16、-【分析】根据勾股定理,可得OA的长,根据半径相等,可得答案.【详解】由勾股定理,得OA==,由半径相等,得OP=OA=,∴点表示的实数是-故答案为:-.【点睛】本题考查了数轴,利用了实数与数轴的一一对应关系.17、4【分析】首先根据题意DE垂直平分AC,可判断AD=CD,可得出△ADC是等腰三角形,∠A=∠ACD=30°,又因为在RtΔABC中,∠B=90°,∠A=30°,得出∠ACB=60°,∠BCD=30°,又由BD=2,根据三角函数值,得出sin∠BCD==,得出CD=4,进而得出AD=4.【详解】解:∵DE垂直平分AC,∴AD=CD,∴△ADC是等腰三角形,∠A=∠ACD=30°又∵在RtΔABC中,∠B=90°,∠A=30°,∴∠ACB=60°,∠BCD=30°又∵BD=2,∴sin∠BCD==∴CD=4∴AD=4.故答案为4.【点睛】此题主要考查等腰三角形的判定和利用三角函数求三角形的边长,熟练掌握即可得解.18、如果两个三角形全等,那么对应的三边相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】∵原命题的条件是:三角形的三边分别相等,结论是:该三角形是全等三角形.∴其逆命题是:如果两个三角形全等,那么对应的三边相等.故答案为如果两个三角形全等,那么对应的三边相等.【点睛】本题考查逆命题的概念,以及全等三角形的判定和性质,解题的关键是熟知原命题的题设和结论.三、解答题(共66分)19、(1)见解析;(2)6【分析】(1)根据DB⊥BC,CF⊥AE,得出∠D=∠AEC,再结合∠DBC=∠ECA=90°,且BC=CA,证明△DBC≌△ECA,即可得证;
(2)由(1)可得△DBC≌△ECA,可得CE=BD,根据BC=AC=12cmAE是BC的中线,即可得出,即可得出答案.【详解】证明:(1)证明:∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°.
∴∠D=∠AEC.
又∵∠DBC=∠ECA=90°,且BC=CA,
在△DBC和△ECA中,∴△DBC≌△ECA(AAS).
∴AE=CD;
(2)由(1)可得△DBC≌△ECA∴CE=BD,∵BC=AC=12cmAE是BC的中线,∴,∴BD=6cm.【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC≌△ECA解题关键.20、(1)B车的平均速度为米/秒;(2)不能,理由见解析;(3)A车调整后的平均速度为米/秒【分析】(1)A车走完全程所用时间秒就是B车走了路程(30-12)米所花的时间,据此列出方程并解得即可;(2)比较A车走完全程(30+12)与B车走了路程所花的时间,即可得到答案;(3)由(2)的结论:B车到达终点所花时间为秒,即可求得A车调整后的平均速度.【详解】(1)设B车的平均速度为米/秒,依题意得:解得:∴B车的平均速度为米/秒;(2)不能,理由是:A车从起点退后12米,再到达终点所花时间为:秒;B车到达终点所花时间为:秒;∴A车比B车先到达终点;(3)由(2)的结论:B车到达终点所花时间为秒;∴A车调整后的平均速度应为:米/秒.【点睛】本题考查了一元一次方程的实际应用,理清速度、路程、时间三者之间的关系是解题的关键.21、(1)见解析;(2)1.【分析】(1)连接AD,证明△BFD≌△AED,根据全等三角形的性质即可得出DE=DF;
(2)根据△DAE≌△DBF,得到四边形AFDE的面积=S△ABD=S△ABC,于是得到结论.【详解】证明:(1)连接AD,
∵Rt△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
∵AB=AC,DB=CD,
∴∠DAE=∠BAD=45°,
∴∠BAD=∠B=45°,
∴AD=BD,∠ADB=90°,
在△DAE和△DBF中,,
∴△DAE≌△DBF(SAS),
∴DE=DF;
(2)∵△DAE≌△DBF,
∴四边形AFDE的面积=S△ABD=S△ABC,
∵BC=1,
∴AD=BC=4,
∴四边形AFDE的面积=S△ABD=S△ABC=××1×4=1.【点睛】本题主要考查了全等三角形的判定和性质以及等腰直角三角形的判定和性质.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.22、王老师前一小时的行驶速度为60千米/小时【分析】设王老师前一小时的行驶速度为x千米/小时,根据题意列出分式方程,然后解分式方程即可.【详解】解:设王老师前一小时的行驶速度为x千米/小时经检验:x=60是原分式方程的解.答:王老师前一小时的行驶速度为60千米/小时.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.23、(1)见解析;(2)图②能,顶角分别是132°和84°,图③不能【分析】(1)本题中,只要找到斜边中点,然后连接直角顶点和斜边中点,那么分成的两个三角形就是等腰三角形.那么只要作AC的垂直平分线就可以了.AC的垂直平分线与AB的交点就是AB的中点;(2)本题要先根据三角形的内角和求出另一角的度数,然后看看是否能分成等腰三角形,图2可以将∠B分成24°和48°.图3不能分成等腰三角形.【详解】(1)作线段AC的垂直平分线,交于点,交于点;过点、作直线.直线即为所求.理由:∵为的垂直平分线,∴,∴.∵,,∴,,∴,∴.(2)图②能画一条直线把它分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是和.图③不能分割成两个等腰三角形..【点睛】本题主要考查了直角三角形的性质和三角形的内角和,等腰三角形的判定等知识点.注意本题作图中的理论依据是直角三角形斜边上的中线等于斜边的一半.24、(1)-2,4;(2)①;②点的坐标为或.【分析】(1)利用非负数的的性质即可求出a,b;
(2)①利用等腰直角三角形的性质即可得出结论;
②分两种情况,利用等腰三角形的性质,及全等三角形的性质求出PC,BC,即可得出结论【详解】解:(1)由题意,得,所以且,解得,;(2)①如图,由(1)知,b=4,
∴B(0,4),
∴OB=4,
点P在直线AB的右侧,且在x轴上,
∵∠APB=45°,
∴OP=OB=4,
∴点的坐标为.②当时,过点作轴于点,则,,∴.又∵,,∴.∴.又∵,∴.∴,.∴.故点的坐标为.当时,作轴,于点,则,,∴.又∵,,∴,∴,又∵,∴.,.∴点的坐标为.故点的坐标为或.【点睛】本题为三角形综合题,考查非负数的的性质、等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.25、(1)证明见解析;(2);(3)【分析】(1)右边利用完全平方公式化简,去括号合并即可验证;
(2)猜想:;(3)根据,将原式变形,计算即可得到结果.【详解】(1)右边左边,故等式成立;(2)右边左边,∴猜想成立,故答案为:;(3)根据(1)(2)的规律,猜想:,右边左边,∴猜想成立;∵,∴.【点睛】本题考查了完全平方公式,熟练掌握题中已知等式的灵活运用是解本题的关键.26、(1)△ABC是等腰三角形;(2)PM∥AN,证明见解析;(3)见解析【分析】(1)由题意可得a=-b,即OA=OB,根据线段垂直平分线的性质可得AC=BC,即△ABC是等腰三角形;(2)延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,根据等腰三角形的性质可得∠NAB=∠NBA,∠ANO=∠BNO,可得∠PNC=∠CNE,根据角平分线的性质可得PM平分∠CPB,根据三角形的外角的性质可得∠CPM=∠CAN=2∠NAB,即可得PM∥AN;
(3)延长GF至点M,使FM=FG,连接CG,CM,AM,由题意可证△AMF≌△DGF,可得AM=DG,由角的数量关系可得∠BCO=∠BDG=∠DBG,即DG=BG,根据“SA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度生态农业科技园承包经营合同范本3篇
- 2025年度绿色能源储藏室建设与维护合同3篇
- 二零二五版城市综合体建设项目建筑垃圾清运及环保处理合同3篇
- 2025年度体育场馆租赁与赛事组织合同3篇
- 二零二五年高性能保温施工合同补充条款及验收标准3篇
- 2025年水电暖安装与节能改造项目总承包合同3篇
- 2025年度医院窗帘定制及消毒防菌合同3篇
- 2025年度智能化仓库场地租赁服务合同范本3篇
- 2025年度拍卖物品售后服务反馈合同范本
- 2025年度智能租赁平台厂房租赁居间协议3篇
- 2024-2030年中国电子邮箱行业市场运营模式及投资前景预测报告
- 基础设施零星维修 投标方案(技术方案)
- 人力资源 -人效评估指导手册
- 大疆80分钟在线测评题
- 2024届广东省广州市高三上学期调研测试英语试题及答案
- 中煤平朔集团有限公司招聘笔试题库2024
- 2023年成都市青白江区村(社区)“两委”后备人才考试真题
- 不付租金解除合同通知书
- 区域合作伙伴合作协议书范本
- 中学数学教学设计全套教学课件
- 环卫公司年终工作总结
评论
0/150
提交评论