




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市净月高新区2023年数学八上期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15° B.20° C.25° D.30°2.已知x2-ax+16可以写成一个完全平方式,则可为()A.4 B.8 C.±4 D.±83.如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9 B.8 C.27 D.454.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.165.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1) B.(-1,) C.(,1) D.(-,-1)6.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等其中正确的结论个数是()A.1 B.2 C.3 D.47.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,108.下列全国志愿者服务标识的设计图中,是轴对称图形的是()A. B. C. D.9.如图,观察图中的尺规作图痕迹,下列说法错误的是()A. B. C. D.10.如图,在中,,是边上的高,,,则的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数与的图象如图,则下列结论①②,且的值随着值的增大而减小.③关于的方程的解是④当时,,其中正确的有___________.(只填写序号)12.如图,平面直角坐标系中有点.连接,以为圆心,以为半径画弧,交轴于点,连接,以为圆心,以为半径画弧,交轴于点,连接,以为圆心,以为半径画弧,交轴于点,按照这样的方式不断在坐标轴上确定点的位置,那么点的坐标是__________.13.已知实数在数轴上的位置如图所示,则化简___________.14.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么的值是____.15.因式分解:_____.16.若2x=3,4y=5,则2x﹣2y+1的值为_____.17.如图,点B,A,D,E在同一条直线上,AB=DE,BC∥EF,请你利用“ASA”添加一个条件,使△ABC≌△DEF,你添加的条件是_____.18.张小林从镜子里看到镜子对面墙上石英钟指示的时间是2点30分,则实际时间为____.三、解答题(共66分)19.(10分)先化简,再求值:,从,1,2,3中选择一个合适的数代入并求值.20.(6分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小明以灵感,他惊喜的发现,当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明,下面是小明利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示摆放,其中∠DAB=90°,求证:证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a,FC=DE=b,∵请参照上述证法,利用图②完成下面的证明:将两个全等的直角三角形按图②所示摆放,其中∠DAB=90°.求证:21.(6分)如图在平面直角坐标系中,的顶点坐标分别为,,(1)请在图中画出关于轴的对称图形,点、、的对称点分别为、、,其中的坐标为;的坐标为;的坐标为.(2)请求出的面积.22.(8分)如图所示,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)求出格点△ABC(顶点均在格点上)的面积;(2)画出格点△ABC关于直线DE对称的;(3)在DE上画出点Q,使△QAB的周长最小.23.(8分)如图,中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒()(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求的值;(3)当为何值时,为等腰三角形24.(8分)(背景知识)研究平面直角坐标系,我们可以发现一条重要的规律:若平面直角坐标系上有两个不同的点、,则线段AB的中点坐标可以表示为(简单应用)如图1,直线AB与y轴交于点,与x轴交于点,过原点O的直线L将分成面积相等的两部分,请求出直线L的解析式;(探究升级)小明发现“若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点”如图2,在四边形ABCD中,对角线AC、BD相交于点O,试说明;(综合运用)如图3,在平面直角坐标系中,,,若OC恰好平分四边形OACB的面积,求点C的坐标.25.(10分)如图,在和中,,,与相交于点.(1)求证:;(2)是何种三角形?证明你的结论.26.(10分)如图,已知过点的直线与直线:相交于点.(1)求直线的解析式;(2)求四边形的面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据三角形的外角性质即可求出答案.【详解】解:延长AC交BD于点E,设∠ABP=α,∵BP平分∠ABD,∴∠ABE=2α,∴∠AED=∠ABE+∠A=2α+60°,∴∠ACD=∠AED+∠D=2α+80°,∵CP平分∠ACD,∴∠ACP=∠ACD=α+40°,∵∠AFP=∠ABP+∠A=α+60°,∠AFP=∠P+∠ACP∴α+60°=∠P+α+40°,∴∠P=20°,故选B.【点睛】此题考查三角形,解题的关键是熟练运用三角形的外角性质,本题属于基础题型.2、D【分析】完全平方公式是两数的平方和加减两数积的2倍,注意符合条件的a值有两个.【详解】解:∵x2-ax+16可以写成一个完全平方式,
∴,解得:.
故选:D.【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3、A【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可【详解】∵正方形A.B.
C的面积依次为2、4、3∴根据图形得:2+4=x−3解得:x=9故选A.【点睛】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键4、C【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C.考点:多边形内角与外角.5、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.6、C【分析】根据全等三角形的判定及性质逐一判断即可.【详解】解:①全等三角形的形状相同、大小相等;①正确,②全等三角形的对应边相等、对应角相等;②正确,③面积相等的两个三角形不一定是全等图形,故③错误,④全等三角形的周长相等,④正确,∴①②④正确,故答案为:C.【点睛】全等三角形的判定及性质,理解并掌握全等三角形的判定及性质是解题的关键.7、B【解析】试题解析:A.
故是直角三角形,故错误;B.
故不是直角三角形,正确;C.
故是直角三角形,故错误;D.
故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.8、C【分析】根据轴对称图形的概念判断即可.【详解】解:A、B、D中的图形不是轴对称图形,
C中的图形是轴对称图形,
故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9、A【分析】由作法知,∠DAE=∠B,进而根据同位角相等,两直线平行可知AE∥BC,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B,∴AE∥BC,∴∠C=∠EAC,∴B、C、D正确;无法说明A正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.10、A【解析】由题意根据含30度角的直角三角形的性质即在直角三角形中,30°角所对的直角边等于斜边的一半,进行分析即可解答.【详解】解:∵,,∴,∵是边上的高,即,∴,即为含30度角的直角三角形,∵,∴.故选:A.【点睛】本题主要考查直角三角形的性质,关键是掌握含30度角的直角三角形的性质即在直角三角形中,30°角所对的直角边等于斜边的一半进行分析解题.二、填空题(每小题3分,共24分)11、②③④【分析】根据函数图象与y轴交点,图象所经过的象限,两函数图象的交点可得答案.【详解】解:y2=x+a的图象与y轴交于负半轴,则a<0,故①错误;
直线y1=kx+b从左往右呈下降趋势,则k<0,且y的值随着x值的增大而减小,故②正确;
一次函数y1=kx+b与y2=x+a的图象交点横坐标为3,则关于x的方程kx+b=x+a的解是x=3,故③正确;
一次函数y1=kx+b与y2=x+a的图象交点横坐标为3,当x>3时,y1<y2,故④正确;
故正确的有②③④,
故答案为:②③④.【点睛】本题主要考查了一次函数的性质和一次函数与一元一次方程,关键是能从函数图象中得到正确答案.12、【分析】利用勾股定理和坐标轴上点的坐标的特征和变化规律,逐步求出至的坐标.【详解】解:,,,,,,……根据变化规律可得,,.【点睛】本题主要考查勾股定理与平面直角坐标系里点的坐标的规律变化,理解题意,找到变化规律是解答关键.13、1【解析】根据数轴得到,,根据绝对值和二次根式的性质化简即可.【详解】由数轴可知,,
则,
∴,
故答案为:1.【点睛】本题考查了绝对值和二次根式的化简及绝对值的性质,关键是根据数轴得出.14、1.【解析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a-b)2=a2-2ab+b2即可求解.【详解】解:根据勾股定理可得a2+b2=13,
四个直角三角形的面积是:ab×4=13-1=12,即:2ab=12,
则(a-b)2=a2-2ab+b2=13-12=1.
故答案为:1.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.15、【分析】根据公式法进行因式分解即可.【详解】解:,故答案为:.【点睛】本题考查用公式法因式分解,熟练掌握公式法并灵活应用是解题的关键.16、【分析】直接利用同底数幂的乘除运算法则将原式变形进而计算即可.【详解】解:∵2x=3,4y=22y=5,∴2x﹣2y+1=2x÷22y×2=3÷5×2=.故答案为:.【点睛】本题考查同底数幂的乘、除法法则,解题的关键是熟练理解:一个幂的指数是相加(或相减)的形式,那么可以分解为同底数幂相乘(或相除)的形式.17、【分析】由平行线的性质得出∠B=∠E,由ASA即可得出△ABC≌△DEF.【详解】解:添加条件:,理由如下:∵BC∥EF,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故答案为:【点睛】本题主要考查利用ASA判定三角形全等,找到另外一组相等角是解题的关键.18、9点1分【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【详解】解:2:1时,分针竖直向下,时针指2,3之间,根据对称性可得:与9:1时的指针指向成轴对称,故实际时间是9:1.故答案为:9点1分【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三、解答题(共66分)19、,1.【分析】根据分式的运算法则和乘法公式将原式化简,根据分式存在有意义的条件选取合适的数代入代数式计算即可.【详解】原式.∵x2﹣1≠0,x﹣2≠0,∴取x=3,原式==1.【点睛】本题考查的是分式的运算和分式存在有意义的条件,根据分式有意义的条件挑选出合适的值代入是解题的关键.20、见解析【分析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,用两种方法表示出,两者相等,整理即可得证.【详解】证明:如图,连接BD,过点B作DE边上的高BF,可得BF=b-a∵,【点睛】本题考查了勾股定理的证明,用两种方法表示出是解题的关键.21、(1)详见解析,(3,4);(4,1);(1,1);(2)4.1.【分析】(1)根据轴对称的定义画出图形,再写出坐标;(2)根据三角形的面积公式求解即可.【详解】(1)如图,为所求;的坐标为(3,4);的坐标为(4,1);的坐标为(1,1).(2)的面积=.【点睛】考核知识点:轴对称和点的坐标;画出图形是关键.22、(1);(2)作图详见解析;(3)作图详见解析.【解析】试题分析:(1)用△ABC所在的四边形的面积减去三个多余小三角形的面积即可;(2)从三角形各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接;(3)利用轴对称图形的性质可作点A关于直线DE的对称点,连接,交直线DE于点Q,点Q即为所求.试题解析:(1)=3×3﹣×3×1﹣×2×1﹣×2×3=;(2)所作图形如图所示:(3)如图所示:利用轴对称图形的性质可得点A关于直线DE的对称点,连接,交直线DE于点Q,点Q即为所求,此时△QAB的周长最小.考点:作图-轴对称变换;轴对称-最短路线问题.23、(1);(2);(3)或或5或【分析】(1)设AP=x,利用勾股定理的方程思想求x,再去求AP长,除以速度得时间t;(2)根据角平分线的性质,设CP=x,继续利用勾股定理法方程思想求x,再算出P的路径长,除以速度得时间t;(3)利用“两圆一线”的方法先画图,找到所有符合条件的P点,再分类讨论,根据等腰三角形的性质求P的路径长,再算时间.【详解】(1)根据勾股定理,,如图,当P在线段AC上,且AP=BP,设AP=BP=x,则,在中,,得,解得,,;(2)如图,AP是的角平分线,过点P作于点Q,由角平分线的性质得到CP=QP,在和中,,∴,∴AC=AQ,设,,,在中,,得,解得,,;(3)需要分情况讨论,如图,一共有三种情况,四个点,①BC=PC,、P在AC上,PC=BC=3,AP=4-3=1,;、如图,P在AB上,PC=BC=3,作于点D,由等积法,,再根据勾股定理,,由等腰三角形“三线合一”,,,;②BC=CP,P在AB上,BC=CP=3,AC+BC+BP=10,;③PB=PC,如图,P在AB上,过点P作于点P,由等腰三角形“三线合一”,E是BC中点,∵,,∴,由中位线定理,P是AB中点,∴,,,综上,当t为或或或时,是等腰三角形.【点睛】本题考查几何图形中的动点问题,涉及勾股定理、角平分线的性质和等腰三角形的性质,解题的关键是按照题目要求求出对应的P点位置,从而得到P的运动路径长,再去除以速度得到时间.24、[简单应用][探究升级][综合运用]【分析】简单应用:先判断出直线L过线段AB的中点,再求出线段AB的中点,最后用待定系数法即可得出结论;探究升级:先判断出,进而判断出≌,即可得出结论;综合运用:借助“探究升级”的结论判断出直线OC过线段AB的中点,进而求出直线OC的解析式,最后将点C坐标代入即可得出结论.【详解】解:简单应用:直线L将分成面积相等的两部分,直线L必过相等AB的中点,设线段AB的中点为E,,,,,直线L过原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年珠宝鉴定师考试前沿试题及答案
- 2024年税务师重点突破试题及答案
- 2025专用合同管理顾问委托合同样本
- 一年级语文时间管理题及答案
- 食品化学成分识别试题及答案
- 2025《技术服务合同》
- 企业可持续发展路径探索
- 2025成都市家庭居室装饰装修施工合同(样本)
- 红河学院《工程光学基础》2023-2024学年第一学期期末试卷
- 信阳师范大学《软件测试技术》2023-2024学年第二学期期末试卷
- 2024年4月贵州省高三年级适应性考试地理试卷
- (高清版)DZT 0073-2016 电阻率剖面法技术规程
- 2024年福建省2024届高三3月省质检(高中毕业班适应性练习卷)英语试卷(含答案)
- 新申请艾滋病筛查实验室验收指南
- 仓储设备操作安全操作培训
- 上海电机学院计算机C语言专升本题库及答案
- 2023年宁波房地产市场年度报告
- 员工身心健康情况排查表
- 模拟小法庭剧本-校园欺凌
- 危险化学品经营企业安全评价细则
- 哈利波特与死亡圣器下双语电影台词
评论
0/150
提交评论