湖南省益阳市赫山区赫山万源中学2024届数学八上期末质量检测模拟试题含解析_第1页
湖南省益阳市赫山区赫山万源中学2024届数学八上期末质量检测模拟试题含解析_第2页
湖南省益阳市赫山区赫山万源中学2024届数学八上期末质量检测模拟试题含解析_第3页
湖南省益阳市赫山区赫山万源中学2024届数学八上期末质量检测模拟试题含解析_第4页
湖南省益阳市赫山区赫山万源中学2024届数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省益阳市赫山区赫山万源中学2024届数学八上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.的平方根是()A.9 B.9或-9 C.3 D.3或-32.已知,,是的三条边长,则的值是()A.正数 B.负数 C.0 D.无法确定3.若把分式中的x和y都扩大10倍,那么分式的值()A.扩大10倍 B.不变 C.缩小10倍 D.缩小20倍4.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点5.下列各组条件中能判定的是()A.,, B.,,C.,, D.,,6.已知是整数,当取最小值时,的值是()A.5 B.6 C.7 D.87.如果,那么代数式的值为()A.-3 B.-1 C.1 D.38.若一个五边形的四个内角都是,那么第五个内角的度数为()A. B. C. D.9.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4) B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y) D.2x+4=2(x+2)10.已知一种细胞的直径约为,请问这个数原来的数是()A. B. C. D.11.点M关于y轴对称的点N的坐标是()A. B. C. D.12.直线上有三个点,,,则,,的大小关系是()A. B. C. D.二、填空题(每题4分,共24分)13.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.14.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.15.用反证法证明命题“在一个三角形中至少有一个内角小于或等于60°”时,应假设________.16.“x的与x的和不超过5”用不等式表示为____.17.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.18.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为_____.三、解答题(共78分)19.(8分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.20.(8分)已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.21.(8分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:一个直角三角形的两条直角边分别为,那么这个直角三角形斜边长为____;如图①,于,求的长度;如图②,点在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数的点(保留痕迹).22.(10分)小江利用计算器计算15×15,1×1,…,95×95,有如下发现:15×15=21=1×2×100+1,1×1=61=2×3×100+135×35=121=3×4×100+1,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+1.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.23.(10分)如图,点在上,,,,与交于点.(1)求证:;(2)若,试判断的形状,并说明理由.24.(10分)甲、乙两个工程队完成某项工程,首先是甲队单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系.(1)求甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式;(2)求实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少多少天?25.(12分)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.26.八年级为筹备红色研学旅行活动,王老师开车前往距学校180的研学训练营地考察,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了40到达研学训练营地.求王老师前一小时行驶速度.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据算术平方根的定义和平方根的定义计算即可.【详解】解:∵=9∴的平方根为3或-3故选D.【点睛】此题考查的是算术平方根和平方根的计算,掌握算术平方根的定义和平方根的定义是解决此题的关键.2、B【分析】利用平方差公式将代数式分解因式,再根据三角形的三边关系即可解决问题.【详解】解:∵(a−b)2−c2=(a−b+c)(a−b−c),

∵a+c>b,b+c>a,

∴a−b+c>1,a−b−c<1,

∴(a−b)2−c2<1.

故选B.【点睛】本题考查因式分解的应用,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式中的x和y都扩大10倍可得:,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.4、A【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【详解】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点睛】本题考查线段垂直平分线的性质,掌握三角形三边垂直平分线的交点到三个顶点的距离相等是本题的解题关键.5、D【分析】根据三角形全等的判定判断即可.【详解】由题意画出图形:A选项已知两组对应边和一组对应角,但这组角不是夹角,故不能判定两三角形全等;B选项已知两组对应边和一组边,但这组边不是对应边,故不能判定两三角形全等;C选项已知三组对应角,不能判定两三角形全等;D选项已知三组对应边,可以判定两三角形全等;故选D.【点睛】本题考查三角形全等的判定,关键在于熟练掌握判定条件.6、A【分析】根据绝对值的意义,找到与最接近的整数,可得结论.【详解】解:∵,∴,且与最接近的整数是5,∴当取最小值时,的值是5,故选A.【点睛】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7、D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8、C【分析】根据多边形的内角和计算出内角和,减去前四个内角即可得到第五个内角的度数【详解】第五个内角的度数为,故选:C.【点睛】此题考查多边形的内角和定理,熟记多边形的内角和公式并熟练解题是关键.9、D【解析】试题分析:A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D点评:此题考查了因式分解﹣运用公式法与提公因式法,熟练掌握因式分解的方法是解本题的关键.10、D【分析】把还原成一般的数,就是把1.49的小数点向左移动4位.【详解】这个数原来的数是cm故选:D【点睛】此题主要考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n<0时,|n|是几,小数点就向左移几位.11、A【分析】根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等即可得出结论.【详解】解:点M关于y轴对称的点N的坐标是故选A.【点睛】此题考查的是求一个点关于y轴对称点的坐标,掌握关于y轴对称的两点坐标关系是解决此题的关键.12、A【分析】先根据函数解析式判断出一次函数的增减性,再根据各点横坐标的特点即可得出结论.【详解】∵直线y=kx+b中k<0,∴y随x的增大而减小,∵1.3>-1.5>−2.4,∴.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.二、填空题(每题4分,共24分)13、y=-x+1.【解析】根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【点睛】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.14、且.【分析】根据一元二次方程的定义,得到m-2≠0,解之,根据“一元二次方程(m-2)x2+x-1=0有两个不相等的实数根”,结合判别式公式,得到一个关于m的不等式,解之,取两个解集的公共部分即可.【详解】根据题意得:,解得:,解得:,综上可知:且,故答案为:且.【点睛】本题考查了根的判别式,一元二次方程的定义,正确掌握根的判别式公式,一元二次方程的定义是解题的关键.15、在一个三角形中三个角都大于60°【分析】根据反证法的第一步是假设结论不成立进行解答即可.【详解】由反证法的一般步骤,第一步是假设命题的结论不成立,所以应假设在一个三角形中三个角都大于60°,故答案为:在一个三角形中三个角都大于60°.【点睛】本题考查反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.16、x+x≤1.【分析】理解题意列出不等式即可.【详解】“x的与x的和不超过1”用不等式表示为x+x≤1,故答案为:x+x≤1.【点睛】此题主要考查了不等式的表示,解题的关键是正确理解题意.17、米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.

设河深BC=xm,则AB=3.5+x米.

根据勾股定理得出:

∵AC3+BC3=AB3

∴1.53+x3=(x+3.5)3

解得:x=3.

【点睛】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.18、1【解析】试题分析:由垂线段最短可知,当PQ与OM垂直的时候,PQ的值最小,根据角平分线的性质可知,此时PA=PQ=1.故答案为1.考点:角平分线的性质;垂线段最短.三、解答题(共78分)19、证明过程见解析【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【详解】∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考点:全等三角形的判定与性质.20、12°【解析】先根据角平分线的定义求得∠EAC的度数,再由三角形外角的性质得出∠AED的度数,最后由直角三角形的性质可得结论.【详解】解:∵AE平分∠BAC,∴∠EAC===50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.故答案为:12°.【点睛】本题考查三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余.21、;;.数轴上画出表示数−的B点.见解析.【分析】(1)根据勾股定理计算;(2)根据勾股定理求出AD,根据题意求出BD;(3)根据勾股定理计算即可.【详解】∵这一个直角三角形的两条直角边分别为∴这个直角三角形斜边长为故答案为:∵∴在中,,则由勾股定理得,在和中∴∴(3)点A在数轴上表示的数是:,由勾股定理得,以O为圆心、OC为半径作弧交x轴于B,则点B即为所求,故答案为:,B点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.22、见解析【分析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【详解】解:左边右边,.【点睛】本题主要考查了完全平方公式的运用,解题的关键是掌握完全平方公式和因式分解的能力.23、(1)详见解析;(2)为等腰直角三角形,理由详见解析.【分析】(1)利用等式的性质可证得,利用SSS可以证明,由全等三角形的性质可以得到;(2)由全等三角形的性质可以得到,根据可得为等腰直角三角形.【详解】(1)证明:..在与中...(2)为等腰直角三角形.【点睛】本题考查了全等三角形的判定和性质以及等腰三角形的性质:等角对等边,正确证明两个三角形全等是解题的关键.24、(1)y=x-;(2)实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天【分析】(1)根据函数图象可以设出y与x的函数解析式,然后根据图象中的数据即可求得工作量y与天数x间的函数关系式;(2)将y=1代入(1)中的函数解析式,即可求得实际完成的天数,然后根据函数图象可以求得甲单独完成需要的天数,从而可以解答本题.【详解】(1)设甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式为:y=kx+b,,得,即甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式是y=x-;(2)令y=1,则1=x-,得x=22,甲队单独完成这项工程需要的天数为:1÷(÷10)=40(天),∵40-22=18,∴实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25、(1)BE=8﹣2;(2)证明见解析;(3)+5+3.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴∠C=90°,CD=AB=6,AD=BC=8,∴DE=AD=8,在Rt△CDE中,CE=,∴BE=BC﹣CE=8﹣2;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论