版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东佛山市禅城区高三数学试题开学统练试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数fxA. B.C. D.2.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是()A. B. C. D.3.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是()A. B. C.16 D.324.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.5.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.56.双曲线的渐近线方程为()A. B.C. D.7.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},则=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}8.已知函数是奇函数,则的值为()A.-10 B.-9 C.-7 D.19.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(
)A. B. C. D.10.复数满足,则()A. B. C. D.11.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i12.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值二、填空题:本题共4小题,每小题5分,共20分。13.如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证:14.数列的前项和为,则数列的前项和_____.15.设全集,,,则______.16.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).(1)应抽查男生与女生各多少人?(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:时间(小时)[0,1](1,2](2,3](3,4](4,5](5,6]频率0.050.200.300.250.150.05若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?男生女生总计每周平均体育锻炼时间不超过2小时每周平均体育锻炼时间超过2小时总计附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87918.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.19.(12分)已知数列和满足,,,,.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.20.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.21.(12分)[选修4-5:不等式选讲]设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.22.(10分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由f12=e-14>0排除选项D;【题目详解】由f12=e-14>0,可排除选项D,f-1=-e【题目点拨】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→02、B【解题分析】
由题意可得的周期为,当时,,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【题目详解】是定义域为R的偶函数,满足任意,,令,又,为周期为的偶函数,当时,,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【题目点拨】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.3、A【解题分析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.4、C【解题分析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.5、D【解题分析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【题目详解】利用表格中数据,可得又,.解得故选:D【题目点拨】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.6、A【解题分析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【题目详解】双曲线得,则其渐近线方程为,整理得.故选:A【题目点拨】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.7、C【解题分析】
根据集合的并集、补集的概念,可得结果.【题目详解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故选:C.【题目点拨】本题考查的是集合并集,补集的概念,属基础题.8、B【解题分析】
根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【题目详解】因为函数是奇函数,所以,.故选:B【题目点拨】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.9、A【解题分析】=,当时时,单调递减,时,单调递增,且当,当,
当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.10、C【解题分析】
利用复数模与除法运算即可得到结果.【题目详解】解:,故选:C【题目点拨】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.11、B【解题分析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.12、B【解题分析】
根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【题目详解】散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.【题目点拨】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、证明见解析.【解题分析】试题分析:四点共圆,所以,又△∽△,所以,即,得证.试题解析:A.连接,因为为圆的直径,所以,又,则四点共圆,所以.又△∽△,所以,即,∴.14、【解题分析】
解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【题目详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.【题目点拨】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.15、【解题分析】
先求出集合,,然后根据交集、补集的定义求解即可.【题目详解】解:,或;∴;∴.故答案为:.【题目点拨】本题主要考查集合的交集、补集运算,属于基础题.16、【解题分析】
可看出,这样根据即可得出,从而得出满足条件的实数的个数为1.【题目详解】解:,或,在同一平面直角坐标系中画出函数与的图象,由图可知与无交点,无解,则满足条件的实数的个数为.故答案为:.【题目点拨】考查列举法的定义,交集的定义及运算,以及知道方程无解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)男生人数为人,女生人数55人.(2)列联表答案见解析,有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【解题分析】
(1)求出男女比例,按比例分配即可;(2)根据题意结合频率分布表,先求出二联表中数值,再结合公式计算,利用表格数据对比判断即可【题目详解】(1)因为男生人数:女生人数=900:1100=9:11,所以男生人数为,女生人数100﹣45=55人,(2)由频率频率直方图可知学生每周平均体育锻炼时间超过2小时的人数为:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均体育锻炼时间超过2小时的女生人数为37人,联表如下:男生女生总计每周平均体育锻炼时间不超过2小时71825每周平均体育锻炼时间超过2小时383775总计4555100因为3.892>3.841,所以有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【题目点拨】本题考查分层抽样,独立性检验,熟记公式,正确计算是关键,属于中档题.18、(1);(2)【解题分析】
(1)利用正弦定理将边化成角,可得,展开并整理可得,从而可求出角;(2)由余弦定理得,进而可得,由,可求出的值,设边上的高为,可得的面积为,从而可求出.【题目详解】(1)由题意,由正弦定理得.因为,所以,所以,展开得,整理得.因为,所以,故,即.(2)由余弦定理得,则,得,故,故的面积为.设边上的高为,有,故,所以边上的高为.【题目点拨】本题考查正弦、余弦定理在解三角形中的应用,考查三角形的面积公式的应用,考查学生的计算求解能力,属于中档题.19、(Ⅰ),;(Ⅱ)1【解题分析】
(Ⅰ)易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.(Ⅱ)由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.【题目详解】(Ⅰ)因为,故是以为首项,2为公比的等比数列,故.又当时,,解得.当时,…①…②①-②有,即.当时也满足.故为常数列,所以.即.故,(Ⅱ)因为对,恒成立.故只需求的最小值即可.设,则,又,又当时,时.当时,因为.故.综上可知.故随着的增大而增大,故,故【题目点拨】本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.20、(1)(2)或.【解题分析】
(1)圆的方程已知,根据条件列出方程组,解方程即得;(2)设,,显然直线l的斜率存在,方法一:设直线l的方程为:,将直线方程和椭圆方程联立,消去,可得,同理直线方程和圆方程联立,可得,再由可解得,即得;方法二:设直线l的方程为:,与椭圆方程联立,可得,将其与圆方程联立,可得,由可解得,即得.【题目详解】(1)记椭圆E的焦距为().右顶点在圆C上,右准线与圆C:相切.解得,,椭圆方程为:.(2)法1:设,,显然直线l的斜率存在,设直线l的方程为:.直线方程和椭圆方程联立,由方程组消去y得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度股权转让及技术服务合同2篇
- 二零二五版建筑门窗材料采购及安装服务合同3篇
- 二零二五版个人信用担保二手房购买贷款合同样本3篇
- 武汉托管班2025年度教师招聘与素质教育服务合同3篇
- 二零二五版智慧城市基础设施勘察设计服务合同3篇
- 2025年度安全生产应急救援预案合同范本3篇
- 二零二五版智能仓储物流中心设施维护与安全管理合同3篇
- 二零二五年建筑水电安装工程合同风险评估合同2篇
- 深圳市2025年度房地产股权交易合同(含工业地产)3篇
- 二零二五版二手房买卖合同补充协议(历史遗留问题)范本3篇
- 再生障碍性贫血课件
- AQ/T 2061-2018 金属非金属地下矿山防治水安全技术规范(正式版)
- 2024年湖北三江航天江河化工科技有限公司招聘笔试冲刺题(带答案解析)
- 采购人员管理制度
- 矿卡司机安全教育考试卷(带答案)
- SYT 6963-2013 大位移井钻井设计指南
- 合同增项补充协议书范本
- 产后抑郁症的护理查房
- 五年级上册数学脱式计算300题及答案
- 循环系统练习试题(含答案)
- 2024年江苏护理职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
评论
0/150
提交评论