版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市牛山一中招生全国统一考试仿真卷(六)-高考数学试题仿真试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数满足,且,则不等式的解集为()A. B. C. D.2.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A. B. C. D.3.已知函数,若时,恒成立,则实数的值为()A. B. C. D.4.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c5.设集合,集合,则=()A. B. C. D.R6.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知函数,若,使得,则实数的取值范围是()A. B.C. D.8.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.9.函数的大致图象为A. B.C. D.10.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.11.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题12.已知实数集,集合,集合,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.14.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.15.若的展开式中各项系数之和为32,则展开式中x的系数为_____16.函数在的零点个数为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.18.(12分)如图所示,在三棱柱中,为等边三角形,,,平面,是线段上靠近的三等分点.(1)求证:;(2)求直线与平面所成角的正弦值.19.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.20.(12分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.21.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.22.(10分)已知函数.(1)讨论的单调性;(2)若,设,证明:,,使.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
构造函数,利用导数研究函数的单调性,即可得到结论.【题目详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【题目点拨】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.2、B【解题分析】
根据比例关系求得会旗中五环所占面积,再计算比值.【题目详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【题目点拨】本题考查面积型几何概型的问题求解,属基础题.3、D【解题分析】
通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【题目详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得.故选:D【题目点拨】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.4、A【解题分析】
利用指数函数、对数函数的单调性直接求解.【题目详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【题目点拨】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5、D【解题分析】试题分析:由题,,,选D考点:集合的运算6、A【解题分析】
计算,得到答案.【题目详解】根据题意,故,表示的复数在第一象限.故选:.【题目点拨】本题考查了复数的计算,意在考查学生的计算能力和理解能力.7、C【解题分析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.8、C【解题分析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【题目详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【题目点拨】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.9、A【解题分析】
因为,所以函数是偶函数,排除B、D,又,排除C,故选A.10、C【解题分析】
根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【题目点拨】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.11、D【解题分析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.12、A【解题分析】
可得集合,求出补集,再求出即可.【题目详解】由,得,即,所以,所以.故选:A【题目点拨】本题考查了集合的补集和交集的混合运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【题目详解】设,交圆于点,所以易知:即.故答案为:【题目点拨】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.14、【解题分析】
由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【题目详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,,,,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【题目点拨】本题考查旋转体的表面积计算问题,属于基础题.15、2025【解题分析】
利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【题目详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【题目点拨】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.16、1【解题分析】
本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.【题目详解】问题函数在的零点个数,可以转化为曲线交点个数问题.在同一直角坐标系内,画出函数的图象,如下图所示:由图象可知:当时,两个函数只有一个交点.故答案为:1【题目点拨】本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)5【解题分析】
(1)首先消去参数得到曲线的普通方程,再根据,,得到曲线的极坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程,利用直线的参数方程中参数的几何意义得解;【题目详解】解:(1)曲线:消去参数得到:,由,,得所以(2)代入,设,,由直线的参数方程参数的几何意义得:【题目点拨】本题考查参数方程、极坐标方程、普通方程的互化,以及直线参数方程的几何意义的应用,属于中档题.18、(1)证明见解析(2)【解题分析】
(1)由,故,所以四边形为菱形,再通过,证得,所以四边形为正方形,得到.(2)根据(1)的论证,建立空间直角坐标,设平面的法向量为,由求得,再由,利用线面角的向量法公式求解.【题目详解】(1)因为,故,所以四边形为菱形,而平面,故.因为,故,故,即四边形为正方形,故.(2)依题意,.在正方形中,,故以为原点,所在直线分别为、、轴,建立如图所示的空间直角坐标系;如图所示:不纺设,则,又因为,所以.所以.设平面的法向量为,则,即,令,则.于是.又因为,设直线与平面所成角为,则,所以直线与平面所成角的正弦值为.【题目点拨】本题考查空间线面的位置关系、线面成角,还考查空间想象能力以及数形结合思想,属于中档题.19、(1);(2).【解题分析】
(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【题目详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【题目点拨】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.20、(1);(2).【解题分析】
(1)在三角形中,利用余弦定理列方程,解方程求得的长,进而由三角形的面积公式求得三角形的面积.(2)利用诱导公式求得,进而求得,利用两角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的长.【题目详解】(1)在中,,解得,.(2)在中,,..【题目点拨】本小题主要考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.21、(1)见解析;(2).【解题分析】
(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【题目详解】(1)证明:取的中点,连接.是的中点,,又,四边形是平行四边形.,又平面平面,平面.(2),,同理可得:,又平面.连接,设,则,建立空间直角坐标系.设平面的法向量为,则,则,取.直线与平面所成角的正弦值为.【题目点拨】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.22、(1)见解析;(2)证明见解析.【解题分析】
(1),分,,,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【题目详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度物业公司保安员夜间值班与休息合同
- 二零二五年度电梯井施工与电梯设备保养合同
- 2025年度幼儿园招生加盟与品牌转让合作协议
- 二零二五年度情感关系建立合同
- 二零二五年度2025年门面房租赁与社区配套服务合同
- 二零二五年度精装修公寓房购买与户外休闲设施使用合同3篇
- 二零二五版奶粉生产废弃物资源化利用服务合同范本页22篇
- 2025年度影视基地场地租赁合同及影视制作服务协议3篇
- 二零二五版电子商务SET协议安全风险评估与风险控制合同3篇
- 二零二五版淋浴房市场推广与广告投放合同3篇
- 城市基础设施维修计划
- 2024山西广播电视台招聘专业技术岗位编制人员20人历年高频500题难、易错点模拟试题附带答案详解
- 新材料行业系列深度报告一:新材料行业研究框架
- 人教版小学英语各册单词表(带英标)
- 广东省潮州市潮安区2023-2024学年六年级上学期期末考试数学试题
- 乡村治理中正式制度与非正式制度的关系解析
- 智能护理:人工智能助力的医疗创新
- 国家中小学智慧教育平台培训专题讲座
- 5G+教育5G技术在智慧校园教育专网系统的应用
- VI设计辅助图形设计
- 浅谈小学劳动教育的开展与探究 论文
评论
0/150
提交评论