版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省福州市闽侯八中高三下-第四次模拟考试数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是()A.∥ B.∥C.∥∥ D.2.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.3.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,184.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)5.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.6.复数满足,则()A. B. C. D.7.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元 B.7000元 C.7500元 D.8000元8.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.9.某几何体的三视图如图所示,则该几何体中的最长棱长为()A. B. C. D.10.在中,,,,为的外心,若,,,则()A. B. C. D.11.设为等差数列的前项和,若,则A. B.C. D.12.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.二、填空题:本题共4小题,每小题5分,共20分。13.某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.14.已知,且,则__________.15.如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_______.16.已知函数在处的切线与直线平行,则为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.18.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M19.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.20.(12分)设函数,(1)当,,求不等式的解集;(2)已知,,的最小值为1,求证:.21.(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.22.(10分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【题目详解】对于A,当,,时,则平面与平面可能相交,,,故不能作为的充分条件,故A错误;对于B,当,,时,则,故不能作为的充分条件,故B错误;对于C,当,,时,则平面与平面相交,,,故不能作为的充分条件,故C错误;对于D,当,,,则一定能得到,故D正确.故选:D.【题目点拨】本题考查了面面垂直的判断问题,属于基础题.2、D【解题分析】
设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【题目详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【题目点拨】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法3、A【解题分析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【题目详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【题目点拨】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.4、C【解题分析】
根据并集的求法直接求出结果.【题目详解】∵,∴,故选C.【题目点拨】考查并集的求法,属于基础题.5、C【解题分析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.6、C【解题分析】
利用复数模与除法运算即可得到结果.【题目详解】解:,故选:C【题目点拨】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.7、D【解题分析】
设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【题目详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【题目点拨】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.8、A【解题分析】
根据两个已知条件求出数列的公比和首项,即得的值.【题目详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【题目点拨】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.9、C【解题分析】
根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长比较下结论.【题目详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC平面ABC,,过S作,连接BD,则,所以,,,,该几何体中的最长棱长为.故选:C【题目点拨】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.10、B【解题分析】
首先根据题中条件和三角形中几何关系求出,,即可求出的值.【题目详解】如图所示过做三角形三边的垂线,垂足分别为,,,过分别做,的平行线,,由题知,则外接圆半径,因为,所以,又因为,所以,,由题可知,所以,,所以.故选:D.【题目点拨】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.11、C【解题分析】
根据等差数列的性质可得,即,所以,故选C.12、D【解题分析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【题目详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【题目点拨】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分组,综合可得出结论.【题目详解】依题意,名学生分成组,则一定是个人组和个人组.①若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;②若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长各名;旅长、师长、军长各名;名司令;名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长;③若新加入的学生是连长,则可以将这个人分组如下:名士兵;士兵、排长、连长各名;连长、营长、团长各名;旅长、师长、军长各名;名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长;④若新加入的学生是营长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长;⑤若新加入的学生是团长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;旅长、师长、军长各名;名司令;名团长.所以新加入的学生可以是团长.综上所述,新加入学生可以扮演种角色.故答案为:.【题目点拨】本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题.14、【解题分析】试题分析:因,故,所以,,应填.考点:三角变换及运用.15、【解题分析】
设,,在中利用正弦定理得出关于的函数,从而可得的最小值.【题目详解】解:设,,则,,∴,在中,由正弦定理可得,即,∴,∴当即时,取得最小值.故答案为.【题目点拨】本题考查正弦定理解三角形的应用,属中档题.16、【解题分析】
根据题意得出,由此可得出实数的值.【题目详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【题目点拨】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).(Ⅱ).【解题分析】
详解:(Ⅰ)当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.(Ⅱ)因为,所以.由题意知对,,即,因为,所以,解得.【题目点拨】⑴绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.⑵不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:①为参数)恒成立②为参数)恒成立.18、(1)p=4;(2)OA⋅【解题分析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p219、(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析【解题分析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意求出的值,即可判断结果是否成立.【题目详解】(1)由题知,,所以,因此动点的轨迹是以,为焦点的椭圆,又知,,所以曲线的标准方程为.又由题知,所以,所以,又因为点在抛物线上,所以,所以抛物线的标准方程为.(2)设,,由题知,所以,即,所以,又因为,,所以,所以为定值,且定值为1.【题目点拨】本题考查了圆锥曲线的定义与性质的应用问题,考查抛物线的几何性质及点在曲线上的代换,也考查了推理与运算能力,是中档题.20、(1)或;(2)证明见解析【解题分析】
(1)将化简,分类讨论即可;(2)由(1)得,,展开后再利用基本不等式即可.【题目详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度物业公司保安员夜间值班与休息合同
- 二零二五年度电梯井施工与电梯设备保养合同
- 2025年度幼儿园招生加盟与品牌转让合作协议
- 二零二五年度情感关系建立合同
- 二零二五年度2025年门面房租赁与社区配套服务合同
- 二零二五年度精装修公寓房购买与户外休闲设施使用合同3篇
- 二零二五版奶粉生产废弃物资源化利用服务合同范本页22篇
- 2025年度影视基地场地租赁合同及影视制作服务协议3篇
- 二零二五版电子商务SET协议安全风险评估与风险控制合同3篇
- 二零二五版淋浴房市场推广与广告投放合同3篇
- 城市基础设施维修计划
- 2024山西广播电视台招聘专业技术岗位编制人员20人历年高频500题难、易错点模拟试题附带答案详解
- 新材料行业系列深度报告一:新材料行业研究框架
- 人教版小学英语各册单词表(带英标)
- 广东省潮州市潮安区2023-2024学年六年级上学期期末考试数学试题
- 乡村治理中正式制度与非正式制度的关系解析
- 智能护理:人工智能助力的医疗创新
- 国家中小学智慧教育平台培训专题讲座
- 5G+教育5G技术在智慧校园教育专网系统的应用
- VI设计辅助图形设计
- 浅谈小学劳动教育的开展与探究 论文
评论
0/150
提交评论