2024届福建福州市高三3月学情调研数学试题试卷_第1页
2024届福建福州市高三3月学情调研数学试题试卷_第2页
2024届福建福州市高三3月学情调研数学试题试卷_第3页
2024届福建福州市高三3月学情调研数学试题试卷_第4页
2024届福建福州市高三3月学情调研数学试题试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建福州市高三3月学情调研数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.632.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.3.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)4.已知中内角所对应的边依次为,若,则的面积为()A. B. C. D.5.已知,则“直线与直线垂直”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.7.若sin(α+3π2A.-12 B.-138.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1 B.2 C.3 D.49.设等比数列的前项和为,若,则的值为()A. B. C. D.10.下列四个图象可能是函数图象的是()A. B. C. D.11.已知复数满足(是虚数单位),则=()A. B. C. D.12.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设O为坐标原点,,若点B(x,y)满足,则的最大值是__________.14.已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为__________.15.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.16.设函数,当时,记最大值为,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.18.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.19.(12分)已知,,为正数,且,证明:(1);(2).20.(12分)已知函数与的图象关于直线对称.(为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.21.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.22.(10分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【题目详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【题目点拨】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.2、C【解题分析】

求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【题目详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【题目点拨】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.3、C【解题分析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【题目详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【题目点拨】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.4、A【解题分析】

由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【题目详解】由余弦定理,得,由,解得,所以,.故选:A.【题目点拨】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.5、B【解题分析】

由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【题目详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【题目点拨】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.6、D【解题分析】

利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【题目详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【题目点拨】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.7、B【解题分析】

由三角函数的诱导公式和倍角公式化简即可.【题目详解】因为sinα+3π2=3故选B【题目点拨】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.8、C【解题分析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1.考点:程序框图.9、C【解题分析】

求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【题目详解】设等比数列的公比为,,,,因此,.故选:C.【题目点拨】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.10、C【解题分析】

首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【题目详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C【题目点拨】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.11、A【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由,得,.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.12、D【解题分析】

设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【题目详解】显然直线不满足条件,故可设直线:,,,由,得,,解得或,,,,,,解得,直线的斜率的取值范围为.故选:D.【题目点拨】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】,可行域如图,直线与圆相切时取最大值,由14、【解题分析】

连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【题目详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,,则,当点的横坐标时,,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【题目点拨】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.15、【解题分析】

作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【题目详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【题目点拨】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.16、【解题分析】

易知,设,,利用绝对值不等式的性质即可得解.【题目详解】,设,,令,当时,,所以单调递减令,当时,,所以单调递增所以当时,,,则则,即故答案为:.【题目点拨】本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2,;(2)证明见解析.【解题分析】

(1)由题意得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点..利用抛物线和圆的对称性,可得,圆心为,半径为2.(2)设,的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.将代入的方程,得,得到点N的坐标为,然后求解.【题目详解】(1)解:由题意得的方程为,所以,解得.又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.所以圆的方程为.(2)证明:易知直线的斜率存在且不为0,设,的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点N的坐标为,所以,,故.【题目点拨】本题主要考查抛物线的定义几何性质以及直线与抛物线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.18、(1)见解析;(2).【解题分析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:(Ⅰ)平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.(Ⅱ)如图,以点为原点,分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量.设为面的法向量,则,即,取,则依题意,则.于是.设直线与平面所成角为,则即直线与平面所成角的正弦值为.19、(1)证明见解析;(2)证明见解析.【解题分析】

(1)利用均值不等式即可求证;(2)利用,结合,即可证明.【题目详解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【题目点拨】本题考查利用均值不等式证明不等式,涉及的妙用,属综合性中档题.20、(1)e;(2)2.【解题分析】

(1)根据反函数的性质,得出,再利用导数的几何意义,求出曲线在点处的切线为,构造函数,利用导数求出单调性,即可得出的值;(2)设,求导,求出的单调性,从而得出最大值为,结合恒成立的性质,得出正整数的最小值.【题目详解】(1)根据题意,与的图象关于直线对称,所以函数的图象与互为反函数,则,,设点,,又,当时,,曲线在点处的切线为,即,代入点,得,即,构造函数,当时,,当时,,且,当时,单调递增,而,故存在唯一的实数根.(2)由于不等式恒成立,可设,所以,令,得.所以当时,;当时,,因此函数在是增函数,在是减函数.故函数的最大值为.令,因为,,又因为在是减函数.所以当时,.所以正整数的最小值为2.【题目点拨】本题考查导数的几何意义和利用导数解决恒成立问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论