版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市49中学2024届八年级数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列四个式子中能因式分解的是()A.x2﹣x+1 B.x2+x C.x3+x﹣ D.x4+12.函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折得到△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.115° B.105° C.95° D.85°4.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90° C.∠BAF=∠CAF D.5.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°6.国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A. B. C. D.7.关于轴的对称点坐标为()A. B. C. D.8.如图,在中,,,,则图中等腰三角形共有()个A.3 B.4 C.5 D.69.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A. B. C. D.10.下式等式从左到右的变形,属于因式分解的是()A.; B.;C.; D..11.把半径为0.5m的地球仪的半径增大0.5m,其赤道长度的增加量记为X,把地球的半径也增加0.5m,其赤道长度的增加量记为Y,那么X、Y的大小关系是()A.X>Y B.X<Y C.X=Y D.X+2π=Y12.如图,在中,是的垂直平分线,,且的周长为,则的周长为()A.24 B.21 C.18 D.16二、填空题(每题4分,共24分)13.在中,是高,若,则的度数为______.14.在函数中,那么_______________________.15.商店以每件13元的价格购进某商品100件,售出部分后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则售完这100件商品可盈利______元.16.直线y=1x﹣1沿y轴向上平移1个单位,再沿x轴向左平移_____个单位得到直线y=1x+1.17.已知变量与满足一次函数关系,且随的增大而减小,若其图象与轴的交点坐标为,请写出一个满足上述要求的函数关系式___________.18.一次函数的图像不经过第__________象限.三、解答题(共78分)19.(8分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.20.(8分)定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{1,5,5}=1.(1)根据题意填空:min=;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.21.(8分)如图,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求:(1)AO,FO的长;(2)图中半圆的面积.22.(10分)已知的积不含项与项,求的值是多少?23.(10分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.24.(10分)如图:在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)将向上平移个单位长度,再向左平移个单位长度,得到,请画出(点,,的对应点分别为,,)(2)请画出与关于轴对称的(点,,的对应点分别为,,)(3)请写出,的坐标25.(12分)如图是小亮同学设计的一个轴对称图形的一部分.其中点都在直角坐标系网格的格点上,每个小正方形的边长都等于1.(1)请画出关于轴成轴对称图形的另一半,并写出,两点的对应点坐标.(2)记,两点的对应点分别为,,请直接写出封闭图形的面积.26.如图,三个顶点坐标分别是(1)请画出关于轴对称的;(2)直接写出的坐标;(3)求出的面积.
参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用提取公因式法以及因式分解的意义分别判断得出答案.【详解】解:A、x2﹣x+1,不能因式分解,故本选项不合题意;B、能运用提取公因式法分解因式,,故本选项符合题意;C、x3+x﹣,不能因式分解,故本选项不合题意;D、x4+1,不能因式分解,故本选项不合题意;故选:B.【点睛】本题考查了因式分解的方法,以及根据因式分解定义判定所给式子能不能进行因式分解,掌握因式分解的方法是解题的关键.2、B【分析】根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.3、C【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【详解】∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°-50°-35°=95°,∴∠D=360°-100°-70°-95°=95°.故选C.【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.4、C【分析】根据三角形的角平分线、中线和高的概念判断.【详解】解:∵AF是△ABC的中线,
∴BF=CF,A说法正确,不符合题意;
∵AD是高,
∴∠ADC=90°,
∴∠C+∠CAD=90°,B说法正确,不符合题意;
∵AE是角平分线,
∴∠BAE=∠CAE,C说法错误,符合题意;
∵BF=CF,
∴S△ABC=2S△ABF,D说法正确,不符合题意;
故选:C.【点睛】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键.5、B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6、A【分析】根据轴对称图形的定义和图案特点即可解答.【详解】A、是轴对称图形,故选项正确;
B、不是轴对称图形,故本选项错误;
C不是轴对称图形,故选项错误;
D、不是轴对称图形,故本选项错误.
故选A.【点睛】此题考查轴对称图形的概念,解题关键在于掌握其定义和识别图形.7、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】点关于x轴对称的点的坐标是.故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.8、D【分析】根据等腰三角形的定义即可找到两个等腰三角形,然后利用等边对等角、三角形的内角和、三角形外角的性质求出图中各个角的度数,再根据等角对等边即可找出所有的等腰三角形.【详解】解:∵,,∴△ABC和△ADE都是等腰三角形,∠B=∠C=36°,∠ADE=∠AED=∴∠BAD=∠ADE-∠B=36°,∠CAE=∠AED-∠C=36°∴∠BAD=∠B,∠CAE=∠C∴DA=DB,EA=EC∴△DAB和△EAC都是等腰三角形∴∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°∴∠BAE=∠AED,∠CAD=∠ADE∴BA=BE,CA=CD∴△BAE和△CAD都是等腰三角形综上所述:共有6个等腰三角形故选D.【点睛】此题考查的是等腰三角形的性质及判定、三角形的内角和定理和三角形外角的性质,掌握等角对等边、等边对等角、三角形的内角和定理和三角形外角的性质是解决此题的关键.9、D【解析】试题分析:根据平行线的性质,可得∠3=∠1,根据两直线垂直,可得所成的角是∠3+∠2=90°,根据角的和差,可得∠2=90°-∠3=90°-60°=30°.故选D.考点:平行线的性质10、C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积的形式,故B错误;C.把一个多项式转化成几个整式积的形式,故C正确;D.没把一个多项式转化成几个整式积的形式,故D错误;故选C.【点睛】此题考查因式分解的意义,解题关键在于掌握运算法则11、C【分析】根据圆的周长公式分别计算长,比较即可得到结论.【详解】解:∵地球仪的半径为0.5米,∴X=2×(0.5+0.5)π﹣2×0.5π=πm.设地球的半径是r米,可得增加后,圆的半径是(r+0.5)米,∴Y=2(r+0.5)π﹣2πr=πm,∴X=Y,故选:C.【点睛】本题考查了圆的认识,圆的周长的计算,正确的理解题意是解题的关键.12、A【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【详解】∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长为16cm,∴AB+BD+DA=AB+BD+DC=AB+BC=16cm,∴△ABC的周长=AB+BC+AC=16+8=24(cm),故选:A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每题4分,共24分)13、65°或25°【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当为锐角三角形时:∠BAC=90°-40°=50°,
∴∠C=(180°-50°)=65°;②当为钝角三角形时:∠BAC=90°+40°=130°,
∴∠C=(180°-130°)=25°;
故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.14、【分析】把代入函数关系式求解即可.【详解】解:当时,.故答案为:.【点睛】本题考查了已知自变量的值求函数值和分母有理化,属于基础题目,正确代入、准确计算是关键.15、1.【分析】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,300)代入上式并解得k的值,即每件售价;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即可求解.【详解】设降价段图象的表达式为:y=kx+b,将(40,800)、(80,1300)代入上式得:并解得:,即每件售价元;从图象看,售出80件即收回成本,利润即为剩下的20件的售出金额,即为:20=1.故答案为:1.【点睛】此题为一次函数的应用,渗透了函数与方程的思想,关键是求降价后每件的价格.16、2【分析】根据直线平移的规律:“左加右减,上加下减”,即可得到答案.【详解】直线y=2x﹣2沿y轴向上平移2个单位得到直线:y=2x﹣2+2=2x,再沿x轴向左平移2个单位得到直线y=2(x+2),即y=2x+2.故答案为:2.【点睛】本题主要考查直线的平移规律,掌握“左加右减,上加下减”的平移规律,是解题的关键.17、答案不唯一,如y=-x+2;【分析】首先根据函数增减性判定的正负,然后根据与轴的交点坐标即可得出解析式.【详解】由题意,得∵与轴的交点坐标为∴满足条件的函数解析式为y=-x+2,答案不唯一;故答案为:答案不唯一,如y=-x+2.【点睛】此题主要考查利用一次函数性质判定解析式,熟练掌握,即可解题.18、二【分析】根据k、b的正负即可确定一次函数经过或不经过的象限.【详解】解:一次函数的图像经过第一、三、四象限,不经过第二象限.故答案为:二【点睛】本题考查了一次函数的图像与性质,一次函数的系数是判断其图像经过象限的关键,,图像经过第一、二、三象限;,图像经过第一、三、四象限;,图像经过第一、二、四象限;,图像经过第二、三、四象限.三、解答题(共78分)19、14【解析】根据勾股定理得AB=7,由旋转性质可得∠A′BA=90°,A′B=AB=7.继而得出AA′=14.【详解】∵点A(2,0),点B(0,3),∴OA=2,OB=3.在Rt△ABO中,由勾股定理得AB=7.根据题意,△A′BO′是△ABO绕点B逆时针旋转90°得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=7,∴AA′=A'B2+A【点睛】本题主要考查旋转的性质及勾股定理,熟练掌握旋转的性质是解题的关键.20、(1)3(2)见解析(3)m≤2【分析】(1)先求出的值,再根据运算规则即可得出答案;(2)先计算交点坐标,画图象即可得出答案;(3)由(2)中的图象,与函数y=﹣x+m的图象有交点则有解,据此即可求解.【详解】(1)∵=3,∴min=3;故答案为3;(2)由图象得:y=;(3)当y=2时,﹣3x+11=2,x=3,∴A(3,2),当y=﹣x+m过点A时,则﹣3+m=2,m=2,如图所示:∴常数m的取值范围是m≤2.【点睛】此题考查了一次函数和一次方程的应用,解题的关键是读懂题意,根据题意结合方程和不等式去求解,考查综合应用能力.21、(1)FO=13cm;(2)(cm2).【分析】(1)根据勾股定理分别求出AO,FO的长;(2)利用半圆面积公式计算即可.【详解】(1)∵在Rt△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO2=BO2+AB2=25,∴AO=5cm.在Rt△AFO中,由勾股定理得FO2=AO2+AF2=132,∴FO=13cm;(2)图中半圆的面积为π×=π×=(cm2).【点睛】此题考查勾股定理,在直角三角形中已知两条边长即可利用勾股定理求得第三条边的长度.22、x3+1【解析】试题分析:先根据多项式乘多项式的法则计算,再让x2项和x项的系数为0,求得a,c的值,代入求解.解:∵(x+a)(x2﹣x+c),=x3﹣x2+cx+ax2﹣ax+ac,=x3+(a﹣1)x2+(c﹣a)x+ac,又∵积中不含x2项和x项,∴a﹣1=0,c﹣a=0,解得a=1,c=1.又∵a=c=1.∴(x+a)(x2﹣x+c)=x3+1.考点:多项式乘多项式.23、(1)(10﹣2t);(2)t=2.5;(3)2.4或2【分析】(1)根据P点的运动速度可得BP的长,再利用BC﹣BP即可得到CP的长;(2)当t=2.5时,△ABP≌△DCP,根据三角形全等的条件可得当BP=CP时,再加上AB=DC,∠B=∠C可证明△ABP≌△DCP;(3)此题主要分两种情况①当BA=CQ,PB=PC时,再由∠B=∠C,可得△ABP≌△QCP;②当BP=CQ,AB=PC时,再由∠B=∠C,可得△ABP≌△PCQ,然后分别计算出t的值,进而得到v的值.【详解】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=(10﹣2t)cm;故答案为:(10﹣2t);(2)当t=2.5时,△ABP≌△DCP,∵当t=2.5时,BP=2.5×2=5,∴PC=10﹣5=5,∵在△ABP和△DCP中,,∴△ABP≌△DCP(SAS);(3)①如图1,当BA=CQ,PB=PC时,再由∠B=∠C,可得△ABP≌△QCP,∵PB=PC,∴BP=PC=BC=5,2t=5,解得:t=2.5,BA=CQ=6,v×2.5=6,解得:v=2.4(秒).②如图2,当BP=CQ,AB=PC时,再由∠B=∠C,可得△ABP≌△PCQ,∵AB=6,∴PC=6,∴BP=10﹣6=4,2t=4,解得:t=2,CQ=BP=4,2v=4,解得:v=2;综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度出租车座套供应周期与质量保证合同
- 电咖啡机用空咖啡胶囊市场发展现状调查及供需格局分析预测报告
- 椎间盘修复用医疗设备市场需求与消费特点分析
- 2024年度机械设备维修与租赁合同
- 轧线机电池制造机械市场发展现状调查及供需格局分析预测报告
- 理发座椅市场需求与消费特点分析
- 2024年度卫星通信技术应用合同
- 2024年度实验室搬迁及运输合同
- 2024年度房屋租赁合同(东莞版)
- 数据管理用计算机市场发展现状调查及供需格局分析预测报告
- 补偿收缩混凝土应用技术规程JGJT1782009
- 机井资料表格(共9页)
- 豆类食物营养成分表
- 造纸及纸制品行业企业风险分级管控体系实施指南(DB37T 3149—2018)
- 农药英语词汇
- 第十二讲区域变质岩的鉴定与描述(1)
- 8D报告(完整详解版)
- 敏捷开发介绍(精选干货)
- 三类医疗器械医疗机构规章管理制度
- 上海版牛津英语5A M2U1 Grandparents教学案例
- (完整版)生育服务证办理承诺书
评论
0/150
提交评论