




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
钢结构施工技术钢结构施工我国建筑钢结构回顾2.十五期间建筑钢结构发展重点3.工程实例1.我国建筑钢结构回顾1956年国家颁发
《1956年设计技术组织措施计划纲要》强调最大限度采用标准设计,尽量节约钢材
*1.我国建筑钢结构回顾1987年国家颁发
《在建筑结构设计中合理使用钢材的若干规定》规定“通过合理选择结构类型以节约钢材,降低造价”*1.我国建筑钢结构回顾1985年~1995年间我国钢产量达到
5,000~8,000万吨/年已具备逐步发展建筑钢结构的条件,但技术政策尚未调整。*1.我国建筑钢结构回顾1996年我国预期钢产量将达到或超过
1亿吨/年建设部编制了
《1996~2020年建筑技术发展政策》
提出了“合理使用钢材,发展钢结构、开发钢结构制造与安装施工新技术”*1.我国建筑钢结构回顾1998年建设部编颁发的
《建筑业推广应用10项新技术》其中第八项为“钢结构技术”
*1.我国建筑钢结构回顾1999年成立了“建筑用钢技术协调组”,并成立了相应的“钢结构专家组”与“钢筋混凝土专家组”*1.我国建筑钢结构回顾1999年后
“建筑用钢技术协调组”制定了有关钢结构工程技术政策:《钢结构住宅建筑产业化技术导则》及《国家建筑钢结构产业“十五”计划和2015年发展规划纲要》明确了今后建筑钢结构的发展重点*2.十五期间建筑钢结构发展重点*3.工程实例
——杭州国际机场航站楼(土法吊装)*3.工程实例
——杭州国际机场航站楼(土法吊装)*3.工程实例
——杭州国际机场航站楼(土法吊装)*3.工程实例
——深圳机场二期航站楼钢结构安装
(滑移法)*3.工程实例
——深圳机场二期航站楼钢结构安装
(滑移法)*3.工程实例
——深圳机场二期航站楼钢结构安装
(滑移法)*3.工程实例
——深圳机场二期航站楼钢结构安装
(滑移法)*3.工程实例
——深圳机场二期航站楼钢结构安装
(滑移法)*3.工程实例
——深圳机场
二期航站楼
钢结构安装
(滑移法)*3.工程实例
——地王大厦
钢结构安装*3.工程实例
——地王大厦钢
结构安装技术*3.工程实例
——金茂大厦
钢结构安装
的校正*3.工程实例
——金茂大厦钢结构安装的校正*3.工程实例
——金茂大厦钢结构安装的校正*
*3.工程实例
——香港国际机场屋顶吊装施工
*3.工程实例
——香港国际机场屋顶吊装施工
*3.工程实例
——香港国际机场屋顶吊装施工
*3.工程实例
——中山大学风雨球场索拱结构施工
*
*
*
*
*
*钢屋盖结构钢屋盖的类别包括:概述平面钢屋架空间桁架:网架§7.1
钢屋盖的组成钢屋盖由屋面、屋架和支撑组成。
7.1.1屋盖结构体系屋面板屋架檩条其它:托架、天窗、檩条等。
房屋横向刚度大,整体性、耐久性好;屋面板自重大,屋盖及下部结构用料多,对抗震不利。屋架间距灵活,构件重量轻、施工、安装方便;屋盖构件数量多,整体刚度差。无檩体系:有檩体系:一般用于预应力混凝土大型屋面板等重型屋面,将屋面板直接放在屋架上。常用于轻型屋面材料的情况。3.满足制造、安装和运输要求·构造简单,杆件夹角30°~60°;·杆件与节点数量少;·分段制造,便于运输与安装;确定屋架形式的原则:1.满足使用要求屋架外形应与屋面材料的排水要求相适应。7.1.2屋架的形式2.满足经济要求·
屋架外形应尽量和弯矩图接近,使上下弦杆内力沿跨度方向分布较均匀,腹杆受力较小;·腹杆的布置宜使短杆受压,长杆受拉;·荷载布置在节点上,减少弦杆局部受弯。①按腹杆布置方式不同有:
·芬克式特点:长腹杆受拉,短腹杆受压,受力合理,应用广泛。1.三角形屋架杆件数量少,节点数量少,受压杆较长,但抗震性能优于芬克式屋架,适用于跨度小于18m的屋架。·单斜式腹杆和节点数量较多,长腹杆受拉,但夹角小,适用于下弦设置天棚的屋架。·人字式③适用范围:跨度小,坡度大、采用轻型屋面材料的有檩体系。②特点:·外形和弯矩图不相适应,弦杆内力分布不均匀,近支座处内力大,近跨中处小,横向刚度小。·上下弦交角小,端节点构造复杂。可将上弦或下弦改变为折线形或陡坡梯形,以改善受力和节点构造。①按腹杆布置方式不同有:·人字式2.梯形屋架特点:腹杆总长度短,节点少。按支座斜杆与弦杆组成的支承点在下弦或在上弦又可分为下承式和上承式两种。上承式下承式·再分式特点:可避免节间直接受荷(非节点荷载)。·单斜杆式
特点:多数腹杆受压,杆件数量多,总长大,应用少。②特点外形和弯矩图比较接近,弦杆内力沿跨度分布较均匀,用料经济,应用广泛。③适用范围适用于屋面坡度平缓且跨度较大时的无檩屋盖结构。④屋架高度梯形屋架的中部高度一般为(1/10~1/8)L,与柱刚接的梯形屋架,端部高度一般为(1/16~1/12)L,通常取为2.0~2.5m。与柱铰接的梯形屋架,端部高度可按跨中经济高度和上弦坡度决定。3.人字形桁架上、下弦可为平行,坡度为1/20~1/10,节点构造较为统一;上、下弦可以具有不同坡度或下弦有一部分水平段,以改善屋架受力情况。跨中高度一般为2.0~2.5m,跨度大于36m时可取较大高度但不宜超过3m;端部高度一般为跨度的1/18~1/12。4.平行弦屋架
上、下弦杆水平,杆件和节点规格化、便于制造。屋架的外形和弯矩图分布不接近,弦件内力分布不均匀。一般用于托架和支撑体系。平面屋架在屋架平面外的刚度和稳定性很差,不能承受水平荷载。因此,为使屋架结构有足够的空间刚度和稳定性,必须在屋架间设置支撑系统。§7.2屋盖支撑
上弦横向水平支撑下弦横向水平支撑下弦纵向水平支撑垂直支撑系杆
组成檩条屋面板①保证屋盖的整体性,提高空间刚度
仅由平面桁架、檩条及屋面材料组成的屋盖结构,是一个不稳定的体系,如果将某些屋架在适当部位用支撑连系起来,成为稳定的空间体系,其余屋架再由檩条或其他构件连接在这个空间稳定体系上,就保证了整个屋盖结构的稳定。②避免压杆侧向失稳,防止拉杆产生过大的振动支撑可作为屋架弦杆的侧向支撑点,减小弦杆出平面外的计算长度。③承担和传递水平荷载(如纵向和横向风荷载、悬挂吊车水平荷载和地震作用等)。④保证结构安装时的稳定与方便屋盖的安装首先用支撑将两相邻屋架连系起来组成一个基本空间稳定体,在此基础上即可顺序进行其他构件的安装。7.2.1支撑的作用7.2.2支撑的布置上弦横向水平支撑一般应设置在房屋两端或纵向温度区段两端的第一柱间或第二柱间,其最大间距为60m,否则在中间应增设一道或几道支撑。有时可将其布置在第二个柱间,但在第一个柱间要设置刚性系杆以支持端屋架和传递端墙风力。1.上弦横向水平支撑2.下弦横向水平支撑当屋架间距<12m时,尚应在屋架下弦设置横向水平支撑,一般和上弦横向水平支撑布置在同一柱间以形成空间稳定体系的基本组成部分。但当屋架跨度比较小(<18m)又无吊车或其他振动设备时,可不设下弦横向水平支撑。3.纵向水平支撑当房屋较高、跨度较大、空间刚度要求较高时,设有支承中间屋架的托架,或设有重级或大吨位的中级工作制桥式吊车等较大振动设备时,均应在屋架端节间平面内设置纵向水平支撑。
一般情况可以省掉。屋架间距<12m时,通常布置在屋架下弦平面。屋架间距≥12m时,宜布置在屋架的上弦平面内。下弦纵向水平支撑垂直支撑联系屋架上、下弦水平支撑,并和屋架水平支撑一起形成几何不变的屋盖空间结构,是上弦横向水平支撑的支承点,在屋盖安装过程中保证屋盖稳定。屋架的垂直支撑应与上、下弦横向水平支撑设置在同一柱间。4.垂直支撑5.系杆
作用:系杆能保证无横向水平支撑的所有屋架在上弦杆平面外的稳定和安装时屋架的稳定,第一柱间的刚性系杆能将山墙的风荷载传到横向水平支撑。
设置:在横向支撑或垂直支撑节点处应沿房屋通长设置系杆。在屋架上弦平面内,对无檩体系屋盖应在屋脊处和屋架端部处设置系杆;对有檩体系只在有纵向天窗下的屋脊处设置系杆。系杆分刚性系杆(既能受拉也能受压)和柔性系杆(只能承受拉力)两种。屋架主要支承节点处的系杆,屋架上弦脊节点处的系杆均宜用刚性系杆。屋架支撑为平行弦桁架,其弦杆可兼作支撑桁架的弦杆,斜腹杆一般采用十字交叉式,与弦杆的交角在30o~60o之间。通常横向水平支撑节点间的距离为屋架上弦节间距离的2~4倍,纵向水平支撑的宽度取屋架端节间的长度,一般为6m左右。
支撑中的交叉斜杆以及柔性系杆按拉杆设计,通常用单角钢做成;非交叉斜杆、弦杆、横杆以及刚性系杆按压杆设计,宜采用双角钢做成的T形截面或十字形截面,其中横杆和刚性系杆常用十字形截面使在两个方向具有等稳定性。屋盖支撑受力较小,截面尺寸一般由杆件容许长细比和构造要求决定。7.2.3支撑的计算和构造§7.3
简支屋架设计7.3.1
屋架的内力分析
屋架上的荷载包括恒载、活荷载、雪荷载、风荷载、积灰荷载及悬挂荷载等。
(1)基本假定
通常将荷载集中到节点上,并假定屋架各杆均为理想直杆,各杆轴线在同一平面内且汇交于节点中心,各节点均为理想铰接,忽略实际节点产生的次应力。
(2)节间荷载引起的局部弯矩节间荷载作用的屋架,除把节间荷载分配到相邻节点外,还应计算节间荷载引起的局部弯矩。0.8M00.6M00.6M00.6M00.6M00.6M00.6M00.6M0(3)内力计算与荷载组合①全跨恒载+全跨活载:即全跨永久荷载+全跨屋面活载或雪荷载(取较大值)+全跨积灰荷载+悬挂吊车荷载。②全跨恒载+半跨活载:即全跨永久荷载+半跨屋面活载(或半跨雪荷载)+半跨积灰荷载+悬挂吊车荷载。③采用大型混凝土屋面板的屋架,尚应考虑安装时可能的半跨荷载:即屋架、支撑和天窗自重+半跨屋面板自重+半跨屋面活荷载。
屋架上、下弦杆和靠近支座的腹杆由①作用时会引起杆件的最不利内力;跨中附近的腹杆可能由②③两种荷载组合控制。B.中间腹杆:两端或一端嵌固程度较大,视为弹性嵌固。lox=0.8l(1)在桁架平面内A.弦杆、支座斜杆、支座竖杆:本身线刚度大,但两端节点嵌固程度较低,视为两端铰接杆件。
lox=l7.3.2杆件的计算长度和容许长细比1.杆件的计算长度下弦杆:取纵向水平支撑节点与系杆或系杆与系杆之间的距离。腹杆:由于节点在平面外刚度很小,对杆件嵌固作用较小,故腹杆两端视为铰接,则lOy=l(2)在桁架平面外取决于弦杆侧向支承点间距离。上弦杆无檩方案:有檩方案:能保证大型屋面板三点与上弦杆焊接时:lOy=l¹1(l¹1≤3m)l¹1—
两块屋面板宽度。檩条与支撑点交叉不连接时:lOy=l1檩条与支撑点交叉连接时:lOy=l1/2
单面连接的单角钢和双角钢组成的十字形杆件,受力后有可能斜向失稳,由于两端节点有一定的嵌固作用,故斜平面计算长度略作折减(支座斜杆和支座竖杆除外),l0=0.9l(4)其他如桁架受压弦杆侧向支承点间的距离为两倍节间长度,且两节间弦杆内力不等时,该弦杆在桁架平面外的计算长度按下式计算:
,
式中:Nl——较大的压力,计算时取正值;N2——较小的压力或拉力,计算时压力取正值,拉力取负值但不小于0.5ll(3)腹杆在斜平面内的计算长度确定桁架弦杆和单系腹杆的长细比时,其计算长度应按下表规定采用。项次弯曲方向弦杆腹杆支座斜杆和支座竖杆其他腹杆1在桁架平面内ll0.8l2在桁架平面外l1ll3斜平面-l0.9ll—
构件的几何长度(节点中心间距离);l1—
桁架弦杆侧向支承点间的距离;2.杆件的容许长细比规范中对拉杆和压杆都规定了容许长细比。7.3.3杆件的截面形式对轴心受压杆件,宜使杆件对两个主轴有相近的稳定性,即可使两方向的长细比接近相等。基本上采用由两个角钢组成的T形截面或十字形截面形式的杆件,也可用H型钢剖开而成的T形钢代替双角钢组成的T形截面。受力较小的次要杆件可采用单角钢。当=时,可采用两个等边角钢截面或TM截面;通常采用不等边角钢短肢相连的截面,或TW型截面以满足长细比要求。上弦杆:有节间荷载时,可采用不等边角钢长肢相连或TN型截面。无节间荷载时,宜采用不等边角钢短肢相连的截面;下弦杆:受力很小的腹杆(如再分杆等次要杆件),可采用单角钢截面。支座斜杆:其他一般腹杆:宜采用等边角钢相并的截面;连接垂直支撑的竖腹杆宜采用两个等边角钢组成的十字形截面;=时,宜采用不等边角钢长肢相连或等边角钢的截面。由双角钢组成的T形或十字形截面杆件按实腹式杆件进行计算,必须每隔一定距离在两个角钢间加设填板。双角钢杆件的填板:填板的间距对压杆l1≤40i1,拉杆l1≤80i1;在T形截面中,i1为一个角钢对平行于填板自身形心轴的回转半径;在十字形截面中,填板应沿两个方向交错放置,i1为一个角钢的最小回转半径,在压杆的桁架平面外计算长度范围内,至少应设置两块填板。填板的宽度一般取50~80mm;填板的长度:对T形截面应比角钢肢伸出10~20mm,对十字形截面则从角钢肢尖缩进10~15mm。填板的厚度与桁架节点板相同。7.3.4杆件的截面选择1.一般原则①应优先选用肢宽而薄的板件或肢件组成的截面,一般板件或肢件的最小厚度为5mm。②角钢杆件或T型钢的悬伸肢宽不得小于45mm。直接与支撑或系杆相连的最小肢宽,应根据连接螺栓的直径d而定。③屋架节点板(或T型钢弦杆的腹板)的厚度,对单壁式屋架,可根据腹杆的最大内力(对梯形和人字形屋架)或弦杆端节间内力(对三角形屋架),按教材表7-3选用。④跨度较大的桁架(≥24m)与柱铰接时,弦杆宜根据内力变化改变截面,半跨内一般只改变一次。⑤同一屋架的型钢规格不宜太多,以便订货。⑥当连接支撑等的螺栓孔在节点板范围内且距节点板边缘距离≥100mm时,计算杆件强度可不考虑截面的削弱。轴心受拉杆件应验算强度和长细比要求。轴心受压杆件和压弯构件要计算强度、整体稳定、局部稳定和长细比。⑦单面连接的单角钢杆件,在按轴心构件计算其强度或稳定以及连接时,钢材和连接的强度设计值应乘以相应的折减系数。2.杆件的截面选择7.3.5钢桁架的节点设计1.节点设计的一般要求①以桁架杆件的形心线为轴线并在节点处相交于一点,肢背至轴线的距离为5mm的倍数。②节点处,腹杆与弦杆或腹杆与腹杆之间焊缝的净距,不宜小于10mm,或者杆件之间的空隙不小于15~20mm。③角钢端部的切割一般垂直于其轴线。有时允许切去一肢的部分,但不允许将一个肢完全切去而另一肢伸出的斜切。④节点板的外形应简单而规则,至少宜有两边平行,如矩形、平行四边形和直角梯形等。节点板边缘与杆件轴线的夹角不应小于15°。2.角钢桁架的节点设计①一般节点一般节点是指无集中荷载和无弦杆拼接的节点
节点板的平面尺寸,一般应根据杆件截面尺寸和腹杆端部焊缝长度画出大样图来确定。肢背焊缝:≥腹杆与节点板的连接焊缝按角钢角焊缝承受轴心力方法计算。节点板应伸出弦杆10~15mm以便焊接。弦杆与节点板的连接焊缝,应考虑承受弦杆相邻节间内力之差,按下式计算:通常因ΔN很小,实际所需的焊脚尺寸可由构造要求确定,并沿节点板全长满焊。肢尖焊缝:≥为便于大型屋面板或檩条的放置,常将节点板缩进上弦角钢背,缩进距离不宜小于(0.5t+2)mm,也不宜大于节点板厚度t。②角钢桁架有集中荷载的节点角钢背凹槽的塞焊缝可假定只承受屋面集中荷载,按下式计算其强度:式中:Q—节点集中荷载垂直于屋面的分量;
——焊脚尺寸,取=0.5t;
——正面角焊缝强度增大系数。一般因Q不大,按构造满焊计算时应考虑偏心弯矩M=ΔN·e(e为角钢肢尖至弦杆轴线距离),按下列公式计算:式中——肢尖焊缝的焊脚尺寸。弦杆角钢肢尖与节点板的连接焊缝承受弦杆相邻节间的内力差当节点板向上伸出不妨碍屋面构件的放置,或因相邻弦杆节间内力差ΔN较大,肢尖焊缝不满足强度要求时,可将节点板部分向上伸出或全部向上伸出。此时弦杆与节点板的连接焊缝应按下列公式计算:肢背焊缝:肢尖焊缝:式中:、——伸出肢背的焊缝焊脚尺寸和计算长度;
普通螺栓的连接一、普通螺栓的连接构造螺栓的规格与表示钢结构一般选用C级(粗制)六角螺母螺栓,标识用M和工程直径(mm)表示,例如M16、M20等螺栓的排列螺栓的各距应满足规定的要求(P71~72,表3.5~8)二、受力性能与计算1、受力分类螺栓根据作用不同,按螺栓受力可以分为:受剪、受拉及剪拉共同作用2、受剪连接受力性能与破坏形式五种破坏形式螺栓受剪破坏孔壁挤压破坏连接板净截面破坏螺栓受弯破坏连接板冲剪破坏单个受剪螺栓的承载力计算螺栓抗剪:孔壁承压:最大承载力:轴力作用受剪螺栓群的连接计算受力特性:沿受力方向,受力分配不均,两端大中间小,在一定范围内,靠塑变可以均布内力,过大时,设计计算时仍按均布,但强度需乘折减系数β,当l1≥15d0时:
当l1≥60d0时β=0.7连接所需螺栓数量:连接板净截面强度扭矩、轴力及剪力共同作用受剪螺栓群计算扭矩作用:轴力及剪力作用轴力扭矩共同作用下最大受力螺栓受拉螺栓连接受力性能与承载力受弯矩作用螺栓连接计算M、N共同作用(偏心受拉)螺栓计算小偏心:大偏心:拉剪共同作用螺栓连接计算注:此类连接因无支托板,一般应考虑精制螺栓连接,以减少连接变形。第七节高强度螺栓连接一、概述按受力特性分:摩擦型与承压型抗剪连接时摩擦型以板件间最大摩擦力为承载力极限状态;承压型允许克服最大摩擦力后,以螺杆抗剪与孔壁承压破坏为承载力极限状态(同普通螺栓)。受拉时两者无区别。高强螺栓采用Ⅱ级孔,便于施工。受传力机理的要求,构造上除连接板的边、端距≥1.5d0外其它同普通螺栓。高强螺栓的材料与强度等级由高强材料经热处理制成,按强度等级分10.9与8.8级。10.9级一般为20MnTiB、40Cr等材料,fu≥1000N/mm2,fu/fy≥0.9;8.8级一般为45#钢制成,fu≥800N/mm2,fu/fy≥0.8。高强螺栓的预拉力(P85表3.9)二、摩擦型高强螺栓连接计算受剪连接计算一个螺栓抗剪承载力连接所需螺栓数净截面强度:考虑50%孔前传力受拉连接高强螺栓计算由于高强螺栓的基本承载力为摩擦力,而摩擦力预正压力有关,为保证板件间保留一定的压紧力《规范》规定:受弯连接结算(形心轴在中排)拉、剪共同作用连接计算三、承压型高强螺栓连接受力性能同普通螺栓,拉剪作用时以栓杆抗剪及孔壁承压承力;受拉同摩擦型,计算公式总结如表3.11。本章重点1、角焊缝的构造与计算;2、焊接残余应力与变形的产生机理与影响;2、普通螺栓受剪连接的破坏形式与机理;3、高强螺栓连接的构造与计算。第四章轴心受力构件第一节概述第二节轴心受力构件的强度与刚度第三节实腹式轴心受压构件的整体稳定第四节实腹式轴心受压构件的局部稳定第五节实腹式轴心受压构件的截面设计第六节格构式轴心受压构件第一节概述轴心受力构件分轴心受拉及受压两类构件,作为一种受力构件,就应满足承载能力与正常使用两种极限状态的要求。正常使用极限状态的要求用构件的长细比来控制;承载能力极限状态包括强度、整体稳定、局部稳定三方面的要求。稳定问题是钢构件的重点问题,所有钢构件都涉及到稳定问题,是钢构件设计的重点与难点。本章将简单讲述钢结构的钢结构稳定理论的一般概念,为下序章节打基础。轴心受力构件的截面分:实腹式与格构式两类(P97图4.2)实腹式又分型钢截面(包括普通型钢与薄壁型钢),组合截面(钢板组合与型钢组合截面)格构式截面又分缀条式截面与缀板式截面第二节轴心受力构件的强度与刚度一、轴心受力构件的强度以净截面的平均应力强度为准则:即二、轴心受力构件的刚度以构件的长细比来控制,即第三节实腹式轴心受压构件的整体稳定一、稳定问题的概述所谓的稳定是指结构或构件受载变形后,所处平衡状态的属性。如图4.4,稳定分稳定平衡、随遇平衡、不稳定平衡。结构或构件失稳实际上为从稳定平衡状态经过临界平衡状态,进入不稳定状态,临界状态的荷载即为结构或构件的稳定极限荷载,构件必须工作在临界荷载之前。
稳定问题为钢结构的重点问题,所有钢结构构件均件均存在稳定问题,稳定问题分构件的整体稳定和局部稳定。二、理想轴心受压构件的整体失稳
1、理想条件:绝对直杆、材料均质、无荷载偏心、无初始应力、完全弹性。
2、典型失稳形式(p101,图4.5)弯曲失稳-只有弯曲变形;扭转失稳-只有扭转变形。弯扭失稳-弯曲变形的同时伴随有扭转变形。单对称截面绕对称轴(或不对称截面)弯曲失稳时,由于截面的形心(内力作用点)与剪心(截面的扭转中心)不重合,截面内的内力分量相对于剪心产生偏心产生扭矩,从而产生扭转变形。失稳承载力低于弯曲失稳承载力。只有类似于十字型截面扭转失稳承载力小于弯曲失稳承载力,其他截面一般来说弯曲稳定承载力均大于扭转失稳承载力。3、理想构件的弹性弯曲失稳根据右图列平衡方程解平衡方程:得4、理想构件的弹塑性弯曲失稳构件失稳时如果截面应力超出弹性极限,则构件进入弹塑性工作阶段,这时应按切线模量理论进行分析3、实际构件的整体稳定实际构件与理想构件间存在着初始缺陷,缺陷主要有:初始弯曲、残余应力、初始偏心。⑴、初始弯曲的影响⑵、初始偏心的影响⑶、残余应力的影响前面已讲:钢构件在轧制、焊接、剪切等过程中,会在钢构件中产生内部自相平衡的残余应力,残余应力对构件的强度无影响,但会对构件的稳定承载力产生不利影响。注:残余应力对弱轴的影响大于对强轴的影响4、实际轴压构件的工程计算方法初始弯曲与初始偏心的影响规律相同,按概率理论两者同时取最大值的几率很小,工程中把初弯曲考虑为最大(杆长的千分之一)以兼并考虑初弯曲的影响;按弯曲失稳理论计算,考虑弯扭失稳的影响,同时考虑残余应力的影响,根据各类影响因素的不同将构件截面类型分为a、b、c及d四类(详见p112,图4.16及p113,表4.4a)。
a类为残余应力影响较小,c类为残余应力影响较大,并有弯扭失稳影响,a、c类之间为b类,d类厚板工字钢绕弱轴。
《规范》计算公式
ψ按λ计算
梁(受弯构件)第一节概述梁主要是用作承受横向荷载的实腹式构件(格构式为桁架),主要内力为弯矩与剪力;梁的正常使用极限状态为控制梁的挠曲变形;梁的承载能力极限状态包括:强度、整体稳定性及局部稳定性;梁的截面主要分型钢与钢板组合截面梁格形式主要有:简式梁格(单一梁)、普通梁格(分主、次梁)及复式梁格(分主梁及横、纵次梁),具体详见P141图5.2第二节梁的强度与刚度一、梁的强度梁在荷载作用下将产生弯应力、剪应力,在集中荷载作用处还有局部承压应力,故梁的强度应包括:抗弯强度、抗剪强度、局部成压强度,在弯应力、剪应力及局部压应力共同作用处还应验算折算应力。1、抗弯强度弹性阶段:以边缘屈服为最大承载力弹塑性阶段:以塑性铰弯矩为最大承载力弹性最大弯矩塑性铰弯矩截面形状系数梁的《规范》计算方法以部分截面发展塑性(1/4截面)为极限承载力状态单向弯曲双向弯曲式中:γ为塑性发展系数,按P143,表5.1b1/t≥13及直接承受动力荷载时γ=1.0二、抗剪强度三、腹板局部压应力四、折算应力两σ同号取1.1,异号取1.2五、梁的刚度控制梁的挠跨比小于规定的限制(为变形量的限制)第三节梁的整体稳定一、梁的失稳机理梁受弯变形后,上翼缘受压,由于梁侧向刚度不够,就会发生梁的侧向弯曲失稳变形,梁截面从上至下弯曲量不等,就形成截面的扭转变形,同时还有弯矩作用平面那的弯曲变形,故梁的失稳为弯扭失稳形式,完整的说应为:侧向弯曲扭转失稳。从以上失稳机理来看,提高梁的整稳承载力的有效措施应为提高梁上翼缘的侧移刚度,减小梁上翼缘的侧向计算长度二、影响梁整体稳定的因素主要因素有:截面形式,荷载类型,荷载作用方式,受压翼缘的侧向支撑。三、整体稳定计算表达式三、梁的整体稳定保证措施提高梁的整体稳定承载力的关键是,增强梁受压翼缘的抗侧移及扭转刚度,当满足一定条件时,就可以保证在梁强度破坏之前不会发生梁的整体失稳,可以不必验算梁的整体稳定,具体条件详见P153四、梁的侧向支撑侧向支撑作用是为梁提供侧向支点,减小侧向计算长度,故要求侧向支撑应可靠,能有效地承受梁侧弯产生的侧向力(实际为弯曲剪力),由于侧弯主要是受压翼缘弯曲引起,同第四章,侧向力可以写为:如果为支杆应按轴心受压构件计算,同时应注意如书P154图5.11
所示的有效支撑。夹支座:梁为侧向弯曲扭转失稳,所以支座处应采取措施限制梁的扭转。第四节梁的局部稳定与加劲肋设计一、概述同轴压构件一样,为提高梁的刚度与强度及整体稳定承载力,应遵循“肢宽壁薄”的设计原则,从而引发板件的局部稳定承载力问题。翼缘板受力较为简单,仍按限制板件宽厚比的方法来保证局部稳定性。腹板受力复杂,而且为满足强度要求,截面高度较大,如仍采用限制梁的腹板高厚比的方法,会使腹板取值很大,不经济,一般采用加劲肋的方法来减小板件尺寸,从而提高局部稳定承载力。图中:1-横向加劲肋
2-纵向加劲肋
3-短加劲肋二、翼缘板的局部稳定设计原则--等强原则按弹性设计(不考虑塑性发展γ=1.0),因有残余应力影响,实际截面已进入弹塑性阶段,《规范》取Et=0.7E。若考虑塑性发展(γ>1.0),塑性发展会更大Et=0.5E。当时,γ=1.0三、腹板的屈曲屈曲应力统一表达式(k值相见p167,表5.9)剪切应力屈曲如不设加劲肋,a>>b,b/a→0,k≈5.34,χ=1.23弯曲应力弹性屈曲如不设加劲肋,k≈23.9,χ=1.66(1.23,扭转不约束)局部压应力弹性屈曲按a/h0=2设置横向加劲肋,k≈18.4,η=1.0复合应力作用板件屈曲仅配置横向加劲肋配有纵向加劲肋的上区格(偏心受压)配有纵向加劲肋的下区格(偏心受压,σc2≈σc)四、加劲肋的配置与构造1、配置规定(P169,表5.10)2、加劲肋的构造横向加劲肋贯通,纵向加劲肋断开;横向加劲肋的间距a应满足,当且时,允许纵向加劲肋距受压翼缘的距离应在范围内;上述各式中,h0为梁腹板的计算高度,hc为梁腹板受压区高度,对于单对称截面,前述表5.10中4、5项中有关纵向加劲肋规定中的h0应取2hc。加劲肋可以成对布置于腹板两侧,也可以单侧布置,支承加劲肋及重级工作制吊车梁必须两侧对称布置。加劲肋必须具备一定刚度,截面尺寸及惯性矩应满足:横向加劲肋的截面尺寸双侧布置时单侧布置时:bs不应小于上式的1.2倍。截面惯性矩的要求(同时配置横、纵肋时)横向肋:纵向肋:当时当时横向加劲肋应按右图示切角,避免多向焊缝相交,产生复杂应力场。支承加劲肋构造与计算在梁支座处及较大集中荷载作用处,应布置支承加劲肋,支承加劲肋实际上就是加大的横向加劲肋,支承加劲肋分梁腹板两侧成对布置的平板式,及凸缘式两种。其作用除保证腹板的局部稳定外,还应承受集中力作用,故除满足横向加劲肋的有关尺寸及构造要求外,尚满足如下所述几方面承载力的要求。稳定性计算注:平板式按b类;凸缘式按c类端面刨平抵紧示应验算端面承压端面焊接时以及支承肋与腹板的焊缝应按第三章方法验算焊缝强度第四节钢梁的设计一、型钢梁的设计1、根据实际情况计算梁的最大弯距设计值Mmax;2、根据抗弯强度,计算所需的净截面抵抗矩:3、查型钢表确定型钢截面4、截面验算强度验算:抗弯、抗剪、局部承压(一般不需验算折算应力强度);刚度验算:验算梁的挠跨比整体稳定验算(型钢截面局部稳定一般不需验算)。根据验算结果调整截面,再进行验算,直至满足。二、组合梁的截面设计1、根据受力情况确定所需的截面抵抗矩2、截面高度的确定最小高度:hmin由梁刚度确定;最大高度:hmax由建筑设计要求确定;经济高度:he由最小耗钢量确定;选定高度:hmin≤h≤hmax;h≈he,并认为h0≈he3、确定腹板厚度(假定剪力全部由腹板承受),则有:或按经验公式:3、确定翼缘宽度确定了腹板厚度后,可按抗弯要求确定翼缘板面积Af,已工字型截面为例:有了Af
,只要选定b、t中的其一,就可以确定另一值。4、截面验算强度验算:抗弯、抗剪、局部承压以及折算应力强度);刚度验算:验算梁的挠跨比;整体稳定验算;局部稳定验算(翼缘板)根据验算结果调整截面,再进行验算,直至满足。根据实际情况进行加劲肋结算与布置4、腹板与翼缘焊缝的计算连接焊缝主要用于承受弯曲剪力,单位长度上剪力为:当梁上承受固定的集中荷载且未设支承了时,上翼缘焊缝同时承受剪力T1及集中力F的共同作用,由F产生的单位长度上的力V1为:第六章拉弯与压弯构建第一节概述第二节拉弯与压弯构件的强度与刚度第三节实腹式压弯构件的整体稳定第四节实腹式压弯构件的局部稳定第五节实腹式压弯构件的截面设计第六节格构式压弯构件第一节概述拉弯与压弯构件实际上就是轴力与弯矩共同作用的构件,也就是为轴心受力构件与受弯构件的组合,典型的三种拉、压弯构件如下图所示。同其他构件一样,拉、压弯构件也需同时满足正常使用及承载能力两种极限状态的要求。正常使用极限状态:满足刚度要求。承载能力极限状态:需满足强度、整体稳定、局部稳定三方面要求。截面形式:同轴心受力构件,分实腹式截面与格构式截面实腹式:型钢截面与组合截面格构式:缀条式与缀板式第二节拉、压弯构件的强度与刚度一、强度两个工作阶段,两个特征点弹性工作阶段:以边缘屈服为特征点(弹性承载力)弹塑性工作阶段:以塑性铰弯距为特征点(极限承载力)极限承载力联立以上两式,消去η,则有如下相关方程
--轴力单独作用时最大承载力--弯距单独作用时最大承载力如右图所示,为计算方便,改用线性相关方程(偏安全)《规范》公式关于±号的说明--如右图所示对于单对称截面,弯距绕非对称轴作用时,会出现两种控制应力状况。不考虑塑性发展(γ=1.0)的情况直接承受动力荷载时;格构式构件,弯距绕虚轴作用时;当时。二、刚度一般情况,刚度由构件的长细比控制,即:第三节实腹式压弯构件的整体稳定一、概述实腹式压弯构件在轴力及弯距作用下,即可能发生弯矩作用平面内的弯曲失稳,也可能发生弯矩作用平面外的弯曲扭转失稳(类似梁)。两方面在设计中均应保证。二、弯矩作用平面内的整体稳定以右图示理想的压弯构件为例考虑初弯曲的影响以受压边缘纤维屈服为破坏准则,则有如果M=0,则构件变为轴心压杆,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论