




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山市彭山一中2024届高三3月统一质量检测试题数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,若AB,则实数的取值范围是()A. B. C. D.2.已知,则p是q的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有()A.1个 B.2个 C.0个 D.无数个4.函数的部分图象如图所示,则的单调递增区间为()A. B.C. D.5.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为()A. B. C. D.6.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行7.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.8.集合,则()A. B. C. D.9.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,1810.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为A. B. C. D.11.函数在上的大致图象是()A. B.C. D.12.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的各项均为正数,记为的前n项和,若,,则________.14.若函数为偶函数,则________.15.已知函数,则曲线在点处的切线方程是_______.16.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.18.(12分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB=2BC,点Q为AE的中点.(1)求证:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.19.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.20.(12分)已知函数.(1)求的极值;(2)若,且,证明:.21.(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.22.(10分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求的直角坐标方程和的直角坐标;(2)设与交于,两点,线段的中点为,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
先化简,再根据,且AB求解.【题目详解】因为,又因为,且AB,所以.故选:D【题目点拨】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2、B【解题分析】
根据诱导公式化简再分析即可.【题目详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【题目点拨】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.3、B【解题分析】
圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【题目详解】因为点在抛物线上,又焦点,,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种.故选:.【题目点拨】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.4、D【解题分析】
由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【题目详解】由图象知,所以,,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:.【题目点拨】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.5、A【解题分析】
设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.【题目详解】双曲线的右顶点为,右焦点为,M所在直线为,不妨设,∴MF的中点坐标为.代入方程可得,∴,∴,∴(负值舍去).故选:A.【题目点拨】本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.6、B【解题分析】
根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【题目详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【题目点拨】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.7、A【解题分析】
由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【题目详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.【题目点拨】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.8、D【解题分析】
利用交集的定义直接计算即可.【题目详解】,故,故选:D.【题目点拨】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.9、A【解题分析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【题目详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【题目点拨】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.10、C【解题分析】
由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值.【题目详解】解:初始值,,程序运行过程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循环,输出的值为其中①②①—②得.故选:.【题目点拨】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题.11、D【解题分析】
讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【题目详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【题目点拨】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.12、D【解题分析】
根据复数的四则运算法则先求出复数z,再计算它的模长.【题目详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【题目点拨】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、127【解题分析】
已知条件化简可化为,等式两边同时除以,则有,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【题目详解】由..故答案为:.【题目点拨】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.14、【解题分析】
二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【题目详解】由为偶函数,知其一次项的系数为0,所以,,所以,故答案为:-5【题目点拨】本题考查由奇偶性求解参数,求函数值,属于基础题15、【解题分析】
求导,x=0代入求k,点斜式求切线方程即可【题目详解】则又故切线方程为y=x+1故答案为y=x+1【题目点拨】本题考查切线方程,求导法则及运算,考查直线方程,考查计算能力,是基础题16、【解题分析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【题目详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【题目点拨】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解题分析】
(1)消去参数可得圆的直角坐标方程,再根据,,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【题目详解】(1)圆:,消去参数得:,即:,∵,,.∴,.(2)∵直线:的极坐标方程为,当时.即:,∴或.∴或,∴直线的倾斜角为或.【题目点拨】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.18、(1)见解析(2)【解题分析】
(1)连接交于点,连接,通过证明,证得平面.(2)建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算出线面角的正弦值.【题目详解】(1)证明:连接交于点,连接,因为四边形为正方形,所以点为的中点,又因为为的中点,所以;平面平面,平面.(2)解:,设,则,在中,,由余弦定理得:,.又,平面..平面.如图建立的空间直角坐标系.在等腰梯形中,可得.则.那么设平面的法向量为,则有,即,取,得.设与平面所成的角为,则.所以与平面所成角的正弦值为.【题目点拨】本小题主要考查线面平行的证明,考查线面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(Ⅰ)详见解析;(Ⅱ).【解题分析】试题分析:(Ⅰ)连接交于,得,所以面,又,得面,即可利用面面平行的判定定理,证得结论;(Ⅱ)如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量,利用向量和向量夹角公式,即可求解与平面所成角的正弦值.试题解析:(Ⅰ)连接BD交AC于O,易知O是BD的中点,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG∥面BEF;(Ⅱ)如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则,,,,,,,设面ABF的法向量为,依题意有,,令,,,,,直线AD与面ABF成的角的正弦值是.20、(1)极大值为;极小值为;(2)见解析【解题分析】
(1)对函数求导,进而可求出单调性,从而可求出函数的极值;(2)构造函数,求导并判断单调性可得,从而在上恒成立,再结合,,可得到,即可证明结论成立.【题目详解】(1)函数的定义域为,,所以当时,;当时,,则的单调递增区间为和,单调递减区间为.故的极大值为;的极小值为.(2)证明:由(1)知,设函数,则,,则在上恒成立,即在上单调递增,故,又,则,即在上恒成立.因为,所以,又,则,因为,且在上单调递减,所以,故.【题目点拨】本题考查函数的单调性与极值,考查了利用导数证明不等式,构造函数是解决本题的关键,属于难题.21、(Ⅰ)(II)【解题分析】
(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;(Ⅱ)因点与点关于坐标原点对称,可得的面积是的面积的两倍,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东大学《农艺与种业领域研究》2023-2024学年第二学期期末试卷
- 拟人课文题目大全及答案
- 浙江横店影视职业学院《天然药物化学》2023-2024学年第二学期期末试卷
- 抚州幼儿师范高等专科学校《粮油加工概论》2023-2024学年第二学期期末试卷
- 河北大学工商学院《中国画人物》2023-2024学年第二学期期末试卷
- 男装纸样设计题目及答案
- 母婴香水测评题目及答案
- 模拟主持题目分类及答案
- 广西艺术学院《医学细胞生物学A》2023-2024学年第二学期期末试卷
- 洛阳文化旅游职业学院《舞龙舞狮》2023-2024学年第二学期期末试卷
- 如何正确呼叫120
- 化疗药物引起肾毒性护理
- 粉末静电喷涂工艺
- 古董数字化展示
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 陕西延长石油集团招聘笔试题库2024
- 2024年黑龙江省绥化市中考物理二模试卷(含答案)
- GB/T 44271-2024信息技术云计算边缘云通用技术要求
- 智慧树知到《星期音乐会(同济大学)》章节测试答案
- GB/T 44265-2024电力储能电站钠离子电池技术规范
- Alluxio助力AI模型训练加速宝典 2.0(实战篇)
评论
0/150
提交评论