版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市求是高级中学2024届高三第一次联合检测试题(5月)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.842.定义,已知函数,,则函数的最小值为()A. B. C. D.3.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.4.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.5.在的展开式中,含的项的系数是()A.74 B.121 C. D.6.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.7.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅8.在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是()A. B. C. D.9.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.64210.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.011.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.12.复数().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正奇数非减数列中,每个正奇数出现次.已知存在整数、、,对所有的整数满足,其中表示不超过的最大整数.则等于______.14.如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,,则双曲线的离心率是______.15.已知数列满足对任意,,则数列的通项公式__________.16.已知复数(为虚数单位),则的模为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:18.(12分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.19.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.20.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.21.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.22.(10分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
画出几何体的直观图,计算表面积得到答案.【题目详解】该几何体的直观图如图所示:故.故选:.【题目点拨】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2、A【解题分析】
根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【题目详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【题目点拨】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.3、D【解题分析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【题目详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【题目点拨】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.4、B【解题分析】
根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【题目详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【题目点拨】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.5、D【解题分析】
根据,利用通项公式得到含的项为:,进而得到其系数,【题目详解】因为在,所以含的项为:,所以含的项的系数是的系数是,,故选:D【题目点拨】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,6、C【解题分析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【题目详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.【题目点拨】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.7、B【解题分析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.8、B【解题分析】
由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围.【题目详解】由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,,,..故选:【题目点拨】本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题.9、A【解题分析】
设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【题目详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【题目点拨】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c10、C【解题分析】
画出可行域和目标函数,根据平移得到最大值.【题目详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【题目点拨】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.11、D【解题分析】
设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【题目详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【题目点拨】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.12、A【解题分析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
将已知数列分组为(1),,共个组.设在第组,,则有,即.注意到,解得.所以,.因此,.故.14、【解题分析】
根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.【题目详解】∵,∴为中点,,∵,∴垂直平分,∴,即,∴,,即.故答案为:【题目点拨】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.15、【解题分析】
利用累加法求得数列的通项公式,由此求得的通项公式.【题目详解】由题,所以故答案为:【题目点拨】本小题主要考查累加法求数列的通项公式,属于基础题.16、【解题分析】,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】
(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【题目详解】(1)对任意恒成立等价于对任意恒成立,令,,则,当时,,单调递增;当时,,单调递减;有最大值,.(2)证明:由(1)知,当时,即,,,令,则,令,则,在上是增函数,又,当时,;当时,,在上是减函数,在上是增函数,,即,.【题目点拨】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.18、(1)证明见解析,;(2)11202.【解题分析】
(1)由n,,成等差数列,可得,,两式相减,由等比数列的定义可得是等比数列,可求数列的通项公式;(2)由(1)中的可求出,根据和求出数列,中的公共项,分组求和,结合等比数列和等差数列的求和公式,可得答案.【题目详解】(1)证明:因为n,,成等差数列,所以,①所以.②①-②,得,所以.又当时,,所以,所以,故数列是首项为2,公比为2的等比数列,所以,即.(2)根据(1)求解知,,,所以,所以数列是以1为首项,2为公差的等差数列.又因为,,,,,,,,,,,所以.【题目点拨】本题考查等比数列的定义,考查分组求和,属于中档题.19、(1);(2)或.【解题分析】
(1)求出,由,建立方程求解,即可求出结论;(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.【题目详解】(1),由题意知,解得(舍去)或.(2)当时,故方程有根,根为或,+0-0+极大值极小值由表可见,当时,有极小值0.由上表可知的减函数区间为,递增区间为,.因为,.由数形结合可得或.【题目点拨】本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.20、(1)见解析(2)直线过定点.【解题分析】
(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【题目详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.【题目点拨】本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.21、(1)证明见解析;(2)证明见解析.【解题分析】
证明:(1)在矩形中,,又平面,平面,所以平面.(2)连结,交于点,连结,在矩形中,点为的中点,又,故,,又,平面,所以平面,又平面,所以平面平面.22、(1);(2)证明见解析【解题分析】
(1)由恒成立,可得恒成立,进而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【题目详解】(1)由题意,可知,由恒成立,可得恒成立.令,则.令,则,,,在上单调递增,又,时,;时,,即时,;时,,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,故存在唯一的极值点,则,,,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,①当时,恒成立,在上单调递增.,,,存在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通讯行业营业员岗位总结
- 幼儿园工作总结点亮孩子未来的希望
- 医疗器械行业技术岗位总结
- 2024校园消防安全应急预案(34篇)
- 减资协议书(2篇)
- 别墅区住宅租赁协议(2篇)
- 全民读书心得体会
- Unit1TeenageLife(词汇短语句式)-2025届高三人教版英语一轮复习闯关攻略(解析版)
- 第9课 列宁与十月革命(分层作业)(解析版)
- 2023-2024学年北京市昌平区高三上学期期末考试地理试题(解析版)
- 工会经费收支预算表
- 舒尔特方格55格200张提高专注力A4纸直接打印版
- 质量管理体系各条款的审核重点
- 聚丙烯化学品安全技术说明书(MSDS)
- 流动资金测算公式
- BBC美丽中国英文字幕
- 卫生院工程施工组织设计方案
- CDR-临床痴呆评定量表
- 《八年级下学期语文教学个人工作总结》
- 铝合金门窗制作工艺卡片 - 修改
- 恒亚水泥厂电工基础试题
评论
0/150
提交评论