二次函数的应用_第1页
二次函数的应用_第2页
二次函数的应用_第3页
二次函数的应用_第4页
二次函数的应用_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第16讲┃

二次函数的应用第16讲二次函数的应用第16讲┃归类示例归类示例►类型之一利用二次函数解决抛物线形问题命题角度:1.利用二次函数解决导弹、铅球、喷水池、抛球、跳水等抛物线形问题;2.利用二次函数解决拱桥、护栏等问题.例1

[2012·安徽]

如图16-1,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.第16讲┃归类示例

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);

(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;

(3)若球一定能越过球网,又不出边界,求h的取值范围.图16-1第16讲┃归类示例[解析](1)根据h=2.6和函数图象经过点(0,2),可用待定系数法确定二次函数的关系式;(2)要判断球是否过球网,就是求x=9时对应的函数值,若函数值大于或等于网高2.43,则球能过网,反之则不能;要判断球是否出界,就是求抛物线与x轴的交点坐标,若该交点坐标小于或等于18,则球不出界,反之就会出界;要判断球是否出界,也可以求出x=18时对应的函数值,并与0相比较.(3)先根据函数图象过点(0,2),建立h与a之间的关系,从而把二次函数化为只含有字母系数h的形式,要求球一定能越过球网,又不出边界时h的取值范围,结合函数的图象,就是要同时考虑当x=9时对应的函数y的值大于2.43,且当x=18时对应的函数y的值小于或等于0,进而确定h的取值范围.第16讲┃归类示例第16讲┃归类示例第16讲┃归类示例第16讲┃归类示例

利用二次函数解决抛物线形问题,一般是先根据实际问题的特点建立直角坐标系,设出合适的二次函数的解析式,把实际问题中已知条件转化为点的坐标,代入解析式求解,最后要把求出的结果转化为实际问题的答案.►类型之二二次函数在营销问题方面的应用命题角度:二次函数在销售问题方面的应用.第16讲┃归类示例例2

[2011·盐城]

利民商店经销甲、乙两种商品.现有如下信息:图16-2第16讲┃归类示例请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?第16讲┃归类示例[解析](1)相等关系:甲、乙两种商品的进货单价之和是5元;按零售价买甲商品3件和乙商品2件,共付了19元.(2)利润=(售价-进价)×件数.第16讲┃归类示例第16讲┃回归教材如何定价利润最大回归教材

某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?

第16讲┃回归教材解:(1)设每件涨价x元,每星期售出商品的利润y随x变化的关系式为y=(60+x)(300-10x)-40(300-10x),自变量x的取值范围是0≤x≤30.∴y=-10x2+100x+6000=-10(x-5)2+6250,因此当x=5时,y取得最大值为6250元.(2)设每件降价x元,每星期售出商品的利润y随x变化的关系式为y=(60-x-40)(300+20x),自变量x的取值范围是0≤x≤20,∴y=-20x2+100x+6000=-20(x-2.5)2+6125,因此当x=2.5时,y取得最大值为6125元.第16讲┃回归教材

(3)每件售价60元(即不涨不降)时,每星期可卖出300件,其利润y=(60-40)×300=6000(元).综上所述,当商品售价定为65元时,一周能获得最大利润6250元.

[点析]

本题是一道较复杂的市场营销问题,需要分情况讨论,建立函数关系式,在每种不同情况下,必须注意自变量的取值范围,以便在这个取值范围内,利用函数最值解决问题.第16讲┃回归教材中考变式[2012·嘉兴]

某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆时,每辆车的日租金为__________元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司日收益不盈也不亏?(1400-50x)第16讲┃回归教材解:(1)(1400-50x)(2)y=x(-50x+1400)-4800=-50x2+1400x-4800=-50(x-14)2+5000.当x=14时,在0≤x≤20范围内,y有最大值5000.∴当每日租出14辆时,租

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论