甘肃省省定西市2024届数学八上期末检测试题含解析_第1页
甘肃省省定西市2024届数学八上期末检测试题含解析_第2页
甘肃省省定西市2024届数学八上期末检测试题含解析_第3页
甘肃省省定西市2024届数学八上期末检测试题含解析_第4页
甘肃省省定西市2024届数学八上期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省省定西市2024届数学八上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是A. B. C. D.2.下列给出的四组线段中,可以构成直角三角形的是()A.4,5,6 B. C.2,3,4 D.12,9,153.在,,,,中,无理数的个数是()A.个 B.个 C.个 D.个4.点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或5.关于函数y=﹣3x+2,下列结论正确的是()A.图象经过点(﹣3,2) B.图象经过第一、三象限C.y的值随着x的值增大而减小 D.y的值随着x的值增大而增大6.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.()A.4个 B.3个 C.2个 D.1个7.如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A.DC=DE B.∠AED=90° C.∠ADE=∠ADC D.DB=DC8.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处9.如图,在平行四边形中,延长到,使,连接交于点,交于点.下列结论①;②;③;④;⑤,其中正确的有()个.A.1 B.2 C.3 D.410.如图,在等腰三角形中,,的垂直平分线交于点,连接,,则的度数为()A. B. C. D.11.已知直线,一个含角的直角三角尺如图叠放在直线上,斜边交于点,则的度数为()A. B. C. D.12.如图,在等腰△ABC中,AB=AC=10,BC=12,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,则AO的长度是()A.10 B.9 C. D.二、填空题(每题4分,共24分)13.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=米,用科学记数法将16纳米表示为__________________米.14.分解因式:3m2﹣6mn+3n2=_____.15.在平面直角坐标系中,将点P(2,0)向下平移1个单位得到,则的坐标为__________.16.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为____________.17.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________.18.如图,∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,则∠B=__________°.三、解答题(共78分)19.(8分)某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.(参考值:,,,)20.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.21.(8分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于轴对称的图形;(2)已知和关于轴成轴对称,写出顶点,,的坐标.22.(10分)老师在黑板上书写了一个式子的正确计算结果随后用手遮住了原式的一部分,如图.(1)求被手遮住部分的式子(最简形式);(2)原式的计算结果能等于一1吗?请说明理由.23.(10分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707-1783年)才发现指数与对数之间的联系,对数的定义:一般地,若,那么x叫做以a为底N的对数,记作:,比如指数式可以转化为,对数式可以转化为,我们根据对数的定义可得到对数的一个性质:),理由如下:设则∴,由对数的定义得又∵,所以,解决以下问题:(1)将指数转化为对数式____;计算___;(2)求证:(3)拓展运用:计算24.(10分)如图,是等边三角形,是的角平分线上一点,于点,线段的垂直平分线交于点,垂足为点.(1)若,求的长.(2)连接,,试判断的形状,并说明理由.25.(12分)先化简,再求值.,从这个数中选取一个合适的数作为的值代入求值.26.小张和同学相约“五一”节到离家2400米的电影院看电影,到电影院后,发现电影票忘带了,此时离电影开始还有25分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回电影院,已知小张骑车的时间比跑步的时间少用了4分钟,骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了6分钟,他能否在电影开始前赶到电影院?说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是.故选A.考点:由实际问题抽象出分式方程.2、D【分析】根据勾股定理判断这四组线段是否可以构成直角三角形.【详解】A.,错误;B.当n为特定值时才成立,错误;C.,错误;D.,正确;故答案为:D.【点睛】本题考查了直角三角形的性质以及判定,利用勾股定理判断是否可以构成直角三角形是解题的关键.3、B【分析】根据无理数的定义判断即可.【详解】解:,是无理数,=,可以化成分数,不是无理数.故选B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.4、D【分析】由点P到两坐标轴的距离相等,建立绝对值方程再解方程即可得到答案.【详解】解:点P到两坐标轴的距离相等,或当时,当综上:的坐标为:或故选D.【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.5、C【解析】根据一次函数的性质和一次函数图象的性质,依次分析各个选项,选出正确的选项即可.【详解】A.把x=﹣3代入y=﹣3x+2得:y=11,即A项错误,B.函数y=﹣3x+2的图象经过第一、二、四象限,即B项错误,C.y的值随着x的增大而减小,即C项正确,D.y的值随着x的增大而减小,即D项错误,故选C.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数的性质和一次函数图象是解题的关键.6、B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:②③④正确.故选:B.【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.7、D【分析】证明△ADC≌△ADE,利用全等三角形的性质即可得出答案.【详解】在△ADC和△ADE中,∵,∴△ADC≌△ADE(SAS),∴DC=DE,∠AED=∠C=90°,∠ADE=∠ADC,故A、B、C选项结论正确,D选项结论错误.故选:D.【点睛】本题考查了全等三角形的判定与性质,注意掌握全等三角形的判定定理及全等三角形的性质,对于选择题来说,可以运用排除法得解.8、A【分析】利用角平分线性质定理即可得出答案.【详解】角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以应建在三个内角平分线的交点上.故选A.考点:角平分线的性质9、B【分析】根据平行四边形的性质和,得到DF是中位线,则,DF=,然后得到,不能得到,,,则正确的只有③⑤,即可得到答案.【详解】解:∵平行四边形ABCD中,有BC=AD,BC∥AD,又∵,∴DF是△BCE的中位线,∴DF=,,故⑤正确;∴,故③正确;由于题目的条件不够,不能证明,,,故①②④错误;∴正确的结论有2个;故选:B.【点睛】本题考查了平行四边形的性质和三角形中位线的性质,解题的关键是熟练掌握所学的性质进行解题.10、A【分析】根据等腰三角形和线段垂直平分线的性质即可得出答案.【详解】∵AB=AC,∠A=45°∴∠ABC=∠C=67.5°又DM是AB的垂直平分线∴DA=DB∴∠A=∠DBA=45°∠DBC=∠ABC-∠DBA=22.5°故答案选择A.【点睛】本题考查的是等腰三角形和线段垂直平分线的性质,比较简单,需要熟练掌握相关基础知识.11、D【分析】首先根据直角三角形的性质判定∠A=30°,∠ACB=60°,然后根据平行的性质得出∠1=∠ACB.【详解】∵含角的直角三角尺∴∠A=30°,∠ACB=60°∵∴∠1=∠ACB=60°故选:D.【点睛】此题主要考查直角三角形以及平行的性质,熟练掌握,即可解题.12、D【分析】连接OA,OB,OC,由,设,根据得到AO为的角平分线,再根据得到,根据三线合一及勾股定理求出AD=8,再根据得到方程即可求解.【详解】解:连接OA,OB,OC,由题意知:,设,,∴AO为的角平分线,又,,∴AD为△ABC的中线,∴BD=6在,AD==8,,,.故选D【点睛】此题主要考查角平分线的判定及性质,解题的关键是熟知等腰三角形的三线合一、角平分线的判定及三角形的面积公式.二、填空题(每题4分,共24分)13、【分析】由1纳米=10-9米,可得出16纳米=1.6×10-1米,此题得解.【详解】∵1纳米=10-9米,∴16纳米=1.6×10-1米.故答案为1.6×10-1.【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.14、3(m-n)2【解析】原式==故填:15、(2,-1)【分析】根据点的平移规律即可得出答案.【详解】根据点的平移规律,向下平移1个单位,纵坐标-1,从而可得到的坐标∴的坐标为(2,-1)故答案为:(2,-1).【点睛】本题主要考查点的平移,掌握点的平移规律是解题的关键.16、20°或40°或70°或100°【详解】解:在Rt△ABC中,∠C=90°,∠A=40°,分四种情况讨论:①当AB=BP1时,∠BAP1=∠BP1A=40°;②当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×40°=20°;③当AB=AP4时,∠ABP4=∠AP4B=×(180°﹣40°)=70°;④当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°﹣40°×2=100°;综上所述:∴∠APB的度数为:20°、40°、70°、100°.故答案为20°或40°或70°或100°.17、【分析】由直角三角形的中线,求出DE的长度,利用三角形中位线定理和勾股定理,求出BE的长度,即可求出答案.【详解】解:∵四边形ABCD是正方形,

∴∠DCE=90°,OD=OB,

∵DF=FE,

∴CF=FE=FD,

∵EC+EF+CF=18,EC=5,

∴EF+FC=13,∴DE=13,

∴DC=,

∴BC=CD=12,

∴BE=BC-EC=7,

∵OD=OB,DF=FE,

∴OF=BE=;故答案为:.【点睛】本题考查正方形的性质,三角形的中位线定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、50【解析】分析:根据三角形外角的性质进行计算即可.详解:∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,故答案为50.点睛:考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.三、解答题(共78分)19、41.08【分析】如图所示,求出DC=2.5,BC=3,由左视图可得AC=1,根据勾股定理求得AB=,由左视图得长方形屋顶长为6.5,根据长方形面积计算公式求得一面屋顶的面积,然后再乘以2即可得解.【详解】如图所示,易知四边形GEDC和BFEG均为矩形,∴BG=EF=0.5,GC=DE=,∴BC=BG+GC=0.5+2.5=3,由左视图可知AC=1,在Rt△ABC中,∴由左视图可知屋顶长为6.5,所以,屋顶顶面的面积为:==41.08.【点睛】此题主要考查了运用勾股定理解决实际问题,同时考查了几何体的三视图.20、见解析.【解析】先证明BC=EF,再根据SAS证明△ABC≌△DEF,再由全等三角形的性质得到∠ACB=∠F.【详解】∵BE=CF,∴BE+EC=CF+EC.即BC=EF.在△ABC与△DEF中,∴△ABC≌△DEF(SAS).∴∠ACB=∠F.【点睛】本题考查三角形全等的判定和性质,掌握全等三角形的判定方法是解题关键.21、(1)图形见详解;(2),,.【分析】(1)根据对称点到对称轴的距离相等,关于轴对称的图形,分别找出对应的顶点、、,连接各顶点;(2)平面直角坐标系中对称轴的性质求出的坐标,的坐标,的坐标,再由、、的坐标求出,,的坐标.【详解】(1)由关于轴对称的图形,对称点到x轴的距离相等,分别找出对应的顶点、、,然后连接各顶点;(2)如图中与关于轴对称,根据关于x轴对称的点纵坐标互为相反数,横坐标相等,可得的坐标,的坐标,的坐标;和关于轴成轴对称,由于关于y轴对称的点横坐标互为相反数,纵坐标相等,可知的坐标,的坐标,的坐标.【点睛】关于轴对称图形的理解,数形结合22、(1);(2)不能,理由见解析【分析】(1)设被手遮住部分的式子为A,代入求值即可;(2)不能,根据分式有意义的条件证明即可.【详解】(1)设被手遮住部分的式子为A,由题意得(2)不能等于-1.由题意可得:若解得:当时,原式的除式为0,无意义.故原式的计算结果不能等于.【点睛】本题考查了分式的混合运算,掌握分式混合运算的法则、分式有意义的条件是解题的关键.23、(1),3;(2)证明见解析;(3)1【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:loga(M•N)=logaM+logaN和=logaM−logaN的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【详解】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设logaM=m,logaN=n,则M=am,N=an,∴==am−n,由对数的定义得m−n=,又∵m−n=logaM−logaN,∴=logaM−logaN(a>0,a≠1,M>0,N>0);(3)log32+log36−log34,=log3(2×6÷4),=log33,=1,故答案为:1.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.24、(1);(2)是直角三角形,理由见解析.【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论