态势感知-知识图谱_第1页
态势感知-知识图谱_第2页
态势感知-知识图谱_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

./一、态势感知〔SA定义SA的正式定义是"对一定时间和空间环境中的元素的感知,对它们的含义的理解,并对他们稍后状态的投影,态势感知这个词最早来自于军队飞行员的领域。对SA的正式定义分解为三个独立的层次:Level1-对环境中的元素的感知Level2-对当前形势的理解〔知识图谱的主要应用领域Level3-未来状况的投影一级:环境中元素的感知实现SA的第一步是感知环境中的相关元素的状态,属性和动态。对于每个域和作业类型,所需的要求是完全不同的。飞行员需要感知的要素,如其他飞机,地形,系统状态和警告灯,以及他们的相关特性。在驾驶舱里,持续监控所有相关的系统和飞行数据,其他飞机,和导航数据的任务相当繁重。一个军官需要探测敌人,平民和友军的位置和行动,地形特征,障碍和天气。一个空中交通管制或汽车司机有一套不同的态势感知。二级SA:现状的理解实现良好SA的第二步是理解数据和线索对目标和目的意味着什么。理解〔第2级SA基于不相交的1级元素的综合,以及该信息与个人目标的对照〔图2.3。它涉及集成许多数据以形成信息,并且优先考虑组合信息与实现当前目标相关的重要性和意义。2级SA类似于具有高水平的阅读理解,而不是仅仅阅读单词。军事指挥官的2级SA可能涉及理解在给定地点的行动报告,这意味着敌军正在附近集结。或者它可能意味着看到沿着道路的车辆轨道,并从那里确定什么类型的部队和单位在军官自己的部队之前。通过理解数据块的重要性,具有2级SA的个体将特定目标相关的含义和意义与手头的信息相关联。三级SA:对未来状态的映射一旦人们知道这些元素是什么以及它们对于当前目标意味着什么,预测这些元素在〔至少在短期内将做什么的能力构成了3级SA。一个人只能通过了解情况〔2级SA以及他们正在使用的系统的功能和动态,达到3级SA。陆军指挥官可以映射到敌方部队接近的方向和他们自己的行动的可能影响,基于他们已经生成的2级SA。飞行员和空中交通管制员积极工作,预测其他飞机的运动并提前预见问题。使用当前情境理解来形成预测需要对领域〔高度发展的心理模型有非常好的理解,并且在心理上可能是相当苛刻的。许多领域的专家花费大量时间来形成3级SA,利用空余时间来生成这些预测。通过不断地前向映射,他们能够制定一套现成的战略和对事件的反应。这让他们掌握主动,避免许多不期望的情况,并且当各种事件发生时也非常快速地响应。二、知识图谱1.知识图谱的概念知识图谱旨在描述真实世界中存在的各种实体或概念及其关系,其构成一张巨大的语义网络图,节点表示实体或概念,边则由属性或关系构成。实体:指的是具有可区别性且独立存在的某种事物。如某一个人、某一个城市、某一种植物等、某一种商品等等。世界万物有具体事物组成,此指实体。如图1的"中国"、"美国"、"日本"等。,实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。语义类〔概念:具有同种特性的实体构成的集合,如国家、民族、书籍、电脑等。概念主要指集合、类别、对象类型、事物的种类,例如人物、地理等。内容:通常作为实体和语义类的名字、描述、解释等,可以由文本、图像、音视频等来表达。属性<值>:从一个实体指向它的属性值。不同的属性类型对应于不同类型属性的边。属性值主要指对象指定属性的值。如图1所示的"面积"、"人口"、"首都"是几种不同的属性。属性值主要指对象指定属性的值,例如960万平方公里等。关系:形式化为一个函数,它把kk个点映射到一个布尔值。在知识图谱上,关系则是一个把kk个图节点<实体、语义类、属性值>映射到布尔值的函数。基于三元组是知识图谱的一种通用表示方式,三元组的基本形式主要包括<实体1-关系-实体2>和<实体-属性-属性值>等。每个实体<概念的外延>可用一个全局唯一确定的ID来标识,每个属性-属性值对<attribute-valuepair,AVP>可用来刻画实体的内在特性,而关系可用来连接两个实体,刻画它们之间的关联。2.知识图谱的架构知识图谱的架构包括自身的逻辑结构以及构建知识图谱所采用的技术〔体系架构。2.1知识图谱的逻辑结构知识图谱在逻辑上可分为模式层与数据层两个层次,数据层主要是由一系列的事实组成,而知识将以事实为单位进行存储。如果用<实体1,关系,实体2>、<实体、属性,属性值>这样的三元组来表达事实,可选择图数据库作为存储介质,例如开源的Neo4j、Twitter的FlockDB、sones的GraphDB等。模式层构建在数据层之上,是知识图谱的核心,通常采用本体库来管理知识图谱的模式层。本体是结构化知识库的概念模板,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。2.2知识图谱的体系架构图1知识图谱的技术架构知识图谱的体系架构是其指构建模式结构,如图2.1所示。其中虚线框内的部分为知识图谱的构建过程,也包含知识图谱的更新过程。知识图谱构建从最原始的数据〔包括结构化、半结构化、非结构化数据出发,采用一系列自动或者半自动的技术手段,从原始数据库和第三方数据库中提取知识事实,并将其存入知识库的数据层和模式层,这一过程包含:信息抽取、知识表示、知识融合、知识推理四个过程,每一次更新迭代均包含这四个阶段。知识图谱主要有自顶向下<top-down>与自底向上<bottom-up>两种构建方式。自顶向下指的是先为知识图谱定义好本体与数据模式,再将实体加入到知识库。该构建方式需要利用一些现有的结构化知识库作为其基础知识库,例如Freebase项目就是采用这种方式,它的绝大部分数据是从维基百科中得到的。自底向上指的是从一些开放链接数据中提取出实体,选择其中置信度较高的加入到知识库,再构建顶层的本体模式。目前,大多数知识图谱都采用自底向上的方式进行构建,其中最典型就是Google的KnowledgeVault和微软的Satori知识库。现在也符合互联网数据内容知识产生的特点。军事应用示例:关系融合应用比传统目标位置信息融合复杂,需要一定的知识积累,在建立战场目标知识库基础上,增加相关知识融合算法,实现知识迭代更新。本文以陆战场目标关系融合应用为例,设计了关系融合的一般应用模式,主要包括陆战场目标本体理解、机场本体建模和机场实体知识图谱构建三个部分。陆战场目标本体理解:陆战场目标包括机场、阵地、营地、基地、障碍物、人物和车辆等,表征目标的信息内容多样、属性元素超多且关系复杂,对目标进行理解是第一步。充分利用人的记忆、阅读和思维规律,采用思维导图将图形、文字和颜色相结合,构建出机场知识体系。从机场本体中心开始,按照基本信息、组成结构、作战能力、综合保障、武器部署、周边防御、环境及影响和动向趋势8个子主题不断扩展和深入,逐步形成一个向周围发散的树状图。其中,同一层节点数表明思维的广度,一个分支长度表明思维的深度,最终构成机场本体完整认知的一幅思维图谱。机场本体思维图谱如图1所示,机场目标知识图谱如图2所示。机场本体建模:基于本文本体构建方法,对机场本体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论