版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:(1)证明当n=n0时命题成立;(2)假设当n=k时命题成立,证明n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.什么是数学归纳法?用数学归纳法证明时,要分两个步骤,两者缺一不可.证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的正确性.在这一步中,只需验证命题结论成立的最小的正整数就可以了,没有必要验证命题对几个正整数成立.(2)证明了第二步,就获得了推理的依据.仅有第二步而没有第一步,则失去了递推的基础;而只有第一步而没有第二步,就可能得出不正确的结论,因为单靠第一步,我们无法递推下去,所以我们无法判断命题对n0+1,n0+2,…,是否正确.在第二步中,n=k命题成立,可以作为条件加以运用,n=k+1时的情况则有待利用命题的已知条件,公理,定理,定义加以证明.
完成一,二步后,最后对命题做一个总的结论.(1)在第二步中,证明n=k+1命题成立时,必须用到n=k命题成立这一归纳假设,否则就打破数学归纳法步骤之间的逻辑严密关系,造成推理无效.证明中的几个注意问题:(2)在第一步中的初始值不一定从1取起,证明时应根据具体情况而定.例:欲用数学归纳法证明2n>n2,试问n的第一个取值应是多少?答:对n=1,2,3,…,逐一尝试,可知初始值为n=5.例1、用数学归纳法证明:证:(1)当n=2时,左边=不等式成立.(2)假设当n=k(k≥2)时不等式成立,即有:则当n=k+1时,我们有:即当n=k+1时,不等式也成立.由(1)、(2)原不等式对一切都成立.例2、证明不等式:证:(1)当n=1时,左边=1,右边=2,不等式显然成立.(2)假设当n=k时不等式成立,即有:则当n=k+1时,我们有:即当n=k+1时,不等式也成立.根据(1)、(2)可知,原不等式对一切正整数都成立.例3、求证:证:(1)当n=1时,左边=,右边=,由于
故不等式成立.(2)假设n=k()时命题成立,即
则当n=k+1时,即当n=k+1时,命题成立.由(1)、(2)原不等式对一切都成立.例4、已知x>
1,且x
0,n
N,n
2.求证:(1+x)n>1+nx.(2)假设n=k时,不等式成立,即
(1+x)k>1+kx当n=k+1时,因为x>
1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.根据(1)和(2),原不等式对任何不小于2的自然数n都成立.证明:(1)当n=2时,左=(1+x)2=1+2x+x2∵x
0,∴1+2x+x2>1+2x=右∴n=1时不等式成立例5、已知求证:.证:(1)当n=2时,,
不等式成立.(2)假设当n=k(k≥2)时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国防盗卡箍阀数据监测研究报告
- 2023年日用及医用橡胶制品项目综合评估报告
- 2024至2030年中国百香鹅数据监测研究报告
- 2024至2030年中国水晶塔模型行业投资前景及策略咨询研究报告
- 2024至2030年中国旋风分离式粉末回收设备数据监测研究报告
- 2024至2030年中国工艺车件数据监测研究报告
- 2024至2030年中国四管塔行业投资前景及策略咨询研究报告
- 中华民族现代文明有哪些鲜明特质?建设中华民族现代文明的路径是什么?参考答案三
- 《运动规律人·走路》课件
- 内蒙古巴彦淖尔市(2024年-2025年小学五年级语文)人教版随堂测试(下学期)试卷及答案
- 海洋工程柔性立管发展概况
- 正确认识疼痛ppt课件
- 人教版PEP六年级英语上册期末试卷
- 真空加压油淬炉操作规程
- 小学六年级家长会PPT课件.ppt
- 服装英语:服装专业单词汇总3
- 二沉池施工方案
- 探源民国时期的金融改革历史
- EN331气阀标准
- 文件管理系统毕业设计论文
- 钢筋混凝土工程施工及验收规范最新(完整版)
评论
0/150
提交评论