




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市宣州区水阳中学2023-2024学年八年级数学第一学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.代数式是关于,的一个完全平方式,则的值是()A. B. C. D.2.如图所示,AB∥CD,O为∠BAC、∠ACD的平分线交点,OE⊥AC于E,若OE=2,则AB与CD之间的距离是()A.2 B.4 C.6 D.83.下列图案中,是轴对称图形的是()A. B. C. D.4.如图为某居民小区中随机调查的户家庭一年的月平均用水量(单位:)的条形统计图,则这户家庭月均用水量的众数和中位数分别是().A., B., C., D.,5.已知是直线为常数)上的三个点,则的大小关系是()A. B. C. D.6.若、、为的三边长,且满足,则的值可以为()A.2 B.5 C.6 D.87.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.三角形的三边为a、b、c,则下列条件不能判断它是直角三角形的是()A.a:b:c=8:16:17 B. C. D.∠A=∠B+∠C9.一个三角形的三边长分别为,则这个三角形的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.形状不能确定10.如图,在中,,的垂直平分线交于点,交于点,若,则()A. B. C. D.11.如图,,平分,若,则的度数为()A. B. C. D.12.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A. B. C. D.二、填空题(每题4分,共24分)13.分解因式:﹣x2+6x﹣9=_____.14.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,点点F作DE∥BC,交AB于点D,交AC于点E。若BD=3,DE=5,则线段EC的长为______.16.当为______时,分式的值为1.17.在RtΔABC中,AB=3cm,BC=4cm,则AC边的长为_____.18.已知(a-2)2+=0,则3a-2b的值是______.三、解答题(共78分)19.(8分)如图,四边形ABCD中,AB∥DC,AB=AD,求证:BD平分∠ADC.20.(8分)一辆汽车开往距离出发地200km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前30分钟到达目的地,求前1小时的行驶速度.21.(8分)如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.22.(10分)以下表示小明到水果店购买2个单价相同椰子和10个单价相同柠檬的经过.小明:老板根据上面两人对话,求原来椰子和柠檬的单价各是多少?23.(10分)公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095若将阅读能力、思维能力和表达能力三项测试得分按1∶3∶1的比确定每人的最后成绩,谁将被录用?24.(10分)(1)已知,求的值.(2)化简:,并从±2,±1,±3中选择一个合适的数求代数式的值.25.(12分)甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求在乙车行驶过程中,当为何值时,两车相距20千米?26.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.(3)若P点在x轴上,当BP+CP最小时,直接写出BP+CP最小值为.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据完全平方公式的a、b求出中间项即可.【详解】,根据a、b可以得出:k=±2×3=±1.故选C.【点睛】本题考查完全平方公式的计算,关键在于熟练掌握完全平方公式.2、B【分析】过点O作MN,MN⊥AB于M,求出MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度是多少,再把它们求和即可.【详解】如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=1,即AB与CD之间的距离是1.故选B.【点睛】此题主要考查了角平分线的性质和平行线之间的距离;熟练掌握角平分线的性质定理是解决问题的关键.3、D【分析】根据轴对称图形的定义:“把一个图形沿某条直线对折,直线两旁的部分能完全重合”可以得到答案.【详解】解:轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,所以A,B,C沿一条直线对折后都不能满足直线两旁的部分能完全重合,所以都不是轴对称图形,只有D符合.故选D.【点睛】本题考查的是“轴对称图形的定义”的应用,所以熟练掌握概念是关键.4、B【解析】根据统计图可得众数为,将10个数据从小到大排列:,,,,,,,,,.∴中位数为,故选.5、A【分析】由为常数)可知k=-5<0,故y随x的增大而减小,由,可得y1,y2,y3的大小关系.【详解】解:∵k=-5<0,∴y随x的增大而减小,∵,∵,故选:A.【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.6、B【分析】根据非负数的性质列方程求出a、b的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c的取值范围,然后解答即可.【详解】解:由题意得,,,
解得:,,
∵4−2=2,4+2=6,
∴,
∴c的值可以为1.
故选:B.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.7、C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.8、A【分析】根据勾股定理的逆定理和三角形的内角和定理进行分析,从而得到答案.【详解】解:A、∵82+162≠172,故△ABC不是直角三角形;B、∵,∴,故△ABC为直角三角形;C、∵a2=(b+c)(b-c),∴b2-c2=a2,故△ABC为直角三角形;D、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选:A【点睛】本题考查勾股定理的逆定理的应用,以及三角形内角和定理,判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.9、B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:∵,,∴∴∴这个三角形一定是直角三角形,
故选:B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10、B【分析】由垂直平分线的性质可得AE=BE,进而可得∠EAB=∠ABE,根据三角形外角性质可求出∠A的度数,利用等腰三角形性质求出∠ABC的度数.【详解】∵DE是AC的垂直平分线,∴AE=BE,∴∠A=∠ABE,∵,∠BEC=∠EAB+∠ABE,∴∠A=76°÷2=38°,∵AB=AC,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.11、B【分析】根据平行线的性质可得,再根据角平分线的定义可得答案.【详解】∵,∴,∵平分,∴,故选B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.12、C【解析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.二、填空题(每题4分,共24分)13、﹣(x﹣3)2【分析】原式提取﹣1,再利用完全平方公式分解即可.【详解】解:原式=﹣(x2﹣6x+9)=﹣(x﹣3)2,故答案为:﹣(x﹣3)2,【点睛】本题考查了公式法分解因式,掌握因式分解的方法是解题的关键.14、1a1.【分析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.【详解】阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1.故答案为:1a1.【点睛】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.15、1【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【详解】∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠FBC,∠EFC=∠BCF,∴∠DFB=∠DBF,∠CFE=∠ECF,∴BD=DF=3,FE=CE,∴CE=DE−DF=5−3=1.故选:C.【点睛】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题难度不大,是一道基础题.16、2.【分析】先根据分式的值为零的条件确定分子为零分母不为零,再求解方程和不等式即得.【详解】解:∵分式的值为1∴∴.故答案为:2.【点睛】本题考查分式的定义,正确抓住分式值为零的条件是解题关键.17、5cm或cm【分析】分两种情况考虑:BC为斜边,BC为直角边,利用勾股定理求出AC的长即可.【详解】若BC为直角边,
∵AB=3cm,BC=4cm,
∴AC=(cm),若BC为斜边,
∵AB=3cm,BC=4cm,
∴AC=(cm),综上所述,AC的长为cm或cm.故答案为:cm或cm.【点睛】本题考查了勾股定理的应用,在解答此题时要注意进行分类讨论,不要漏解.18、1【分析】根据非负数的性质列式求出、b的值,然后代入代数式进行计算即可得解.【详解】∵(-2)2+=2,∴-2=2,b+2=2,解得:=2,b=-2,则3-2b=3×2-2×(-2)=6+4=1,故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.三、解答题(共78分)19、见解析【分析】由AB=AD可得出∠ADB=∠ABD,由AB∥DC,利用“两直线平行,内错角相等”可找出∠ABD=∠BDC,结合∠ADB=∠ABD可得出∠ADB=∠BDC,进而可证出BD平分∠ADC.【详解】证明:∵AB=AD,∴∠ADB=∠ABD,又∵AB∥DC,∴∠ABD=∠BDC,∴∠ADB=∠BDC,即BD平分∠ADC.【点睛】本题考查了等腰三角形的性质,平行线的性质,角平分线的判定,掌握等腰三角形的性质是解题的关键.20、原计划的行驶速度为80千米/时.【分析】首先设原计划的行驶速度为x千米/时,根据题意可得等量关系:原计划所用时间实际所用时间=30分钟,根据等量关系列出方程,再解即可.【详解】解:设原计划的行驶速度为x千米/时,由题意得:,解得:,经检验:x=80是原分式方程的解.答:原计划的行驶速度为80千米/时.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出原计划所用时间和实际所用时间,根据时间关系列出分式方程.21、∠F=26°,∠BDF=87°.【分析】根据对顶角相等可知∠CEF=∠AED;又∠ACB是△CEF的外角,所以根据外角的性质求出∠F;根据三角形内角和定理可求∠BDF的度数.【详解】解:∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°.【点睛】此题考查三角形内角和定理和三角形的外角的性质,正确识图运用定理进行推理计算是关键.22、椰子的单价为25元,柠檬的单价为5元【解析】设原来椰子和柠檬的单价各是x元和y元,根据图中信息可得等量关系:2个椰子的价钱+10个柠檬的价钱=100元,2个椰子的价钱+0.9×10个柠檬的价钱=95,据此列方程组求解即可.【详解】设原来椰子和柠檬的单价各是x元和y元,根据题意,得,解得,答:椰子的单价为25元,柠檬的单价为5元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23、甲将被录用.【分析】根据加权平均数的计算公式分别进行解答即可.【详解】解:(分)(分)∴∴甲将被录用.【点睛】本题主要考查加权平均数,解题的关键是熟练掌握加权平均数的计算公式.24、(1)原式=,把代入得;原式;(2)原式,当时,原式.【分析】(1)先进行整式运算,再代入求值;(2)先进行分式计算,根据题意选择合适的值代入求解.【详解】解:(1)原式,把代入得,原式;(2)原式,由分式有意义条件得当x为-2,±3时分式无意义,∴当时,原式.【点睛】(1)整体代入求值是一种常见的化简求值的方法,要熟练掌握;(2)遇到分式化简求值时,要使选择的值确保原分式有意义.25、(1)乙车比甲车晚出发1小时;(2)乙车出发1.5小时后追上甲车;(3)在乙车行驶过程中,当t为1或2时,两车相距20千米.【分析】(1)从图像及题意可直接进行解答;(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,然后根据图像可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿用照明与安全标识设备考核试卷
- 毛巾类制品的库存控制与仓储管理考核试卷
- 劳务派遣服务的客户关系优化策略制定与执行评估考核试卷
- 石膏在轻质隔墙板制造中的应用考核试卷
- 生态环境监测在环境教育中的重要性考核试卷
- 电视机修理操作流程考核试卷
- 碱金属与水的反应研究考核试卷
- 纺织机械的智能工厂运营管理策略优化考核试卷
- 天津医科大学临床医学院《舞蹈与健康》2023-2024学年第二学期期末试卷
- 吉林水利电力职业学院《清代宫廷文化史》2023-2024学年第二学期期末试卷
- 食堂负面清单管理制度
- 2025年中国共青团入团团员必知知识考试题与答案
- 2024年郑州铁路职业技术学院单招职业倾向性测试题库必考题
- 2025年山东省济南市平阴县中考一模英语试题(原卷版+解析版)
- 2025年安徽省示范高中皖北协作区第27届联考 生物学(含解析)
- 移动业务代办协议书
- 2025年CSCO胃癌诊疗指南解读
- 2025年度专业技术人员继续教育公需科目考试题(附答案)
- 2025届广东省高三一模生物学试卷(原卷版+解析版)
- 述职报告:岗位认知
- 部编版语文三年级下册第六单元集体备课
评论
0/150
提交评论