2024届浙江杭州拱墅锦绣育才八年级数学第一学期期末经典模拟试题含解析_第1页
2024届浙江杭州拱墅锦绣育才八年级数学第一学期期末经典模拟试题含解析_第2页
2024届浙江杭州拱墅锦绣育才八年级数学第一学期期末经典模拟试题含解析_第3页
2024届浙江杭州拱墅锦绣育才八年级数学第一学期期末经典模拟试题含解析_第4页
2024届浙江杭州拱墅锦绣育才八年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江杭州拱墅锦绣育才八年级数学第一学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各式计算正确的是()A. B. C. D.2.如果点P(m,1﹣2m)在第一象限,那么m的取值范围是()A. B. C. D.3.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.y1≥y24.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm5.若关于、的二元一次方程有一个解是,则().A.2 B.3 C.4 D.56.已知在四边形ABCD中,,,M,N分别是AD,BC的中点,则线段MN的取值范围是()A. B. C. D.7.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-28.一次函数y=ax+b,若a+b=1,则它的图象必经过点()A.(-1,-1) B.(-1,1) C.(1,-1) D.(1,1)9.在直角坐标系中,函数与的图像大数是()A. B.C. D.10.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A.2 B.﹣6 C.5 D.﹣311.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是()A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E12.如图,已知BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是(

)A.AB=DE B.AC∥DF C.∠A=∠D D.AC=DF二、填空题(每题4分,共24分)13.人体淋巴细胞的直径大约是0.000009米,将0.000009用科学计数法表示为__________.14.如果,那么_______________.15.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大11cm,O到AB的距离为4cm,△OBC的面积_____cm1.16.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.17.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.18.若式子在实数范围内有意义,则的取值范围是__________.三、解答题(共78分)19.(8分)计算与化简:①;②;③已知,求的值.④(利用因式分解计算)20.(8分)如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.21.(8分)先化简:,然后从的范围内选取一个合适的整数为的值代入求值.22.(10分)新乐超市欲招聘收银员一名,对A、B、C三名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如右表.新乐超市根据实际需要,将计算机、商品知识和语言表达能力测试得分按5:3:2的比例确定每人的成绩,此时谁将被录用?请写出推理过程.23.(10分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.24.(10分)如图,已知点在同一直线上,∥,且,,求证:∥.25.(12分)如图,在四边形ABCD中,∠B=90°,DE//AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.(1)求证:△ACD是等腰三角形;(2)若AB=4,求CD的长.26.从沈阳到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是千米,普通列车的行驶路程是高铁的行驶路程的倍.(1)求普通列车的行驶路程.(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短小时,求高铁的平均速度.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题解析:A.,故原选项错误;B.,故原选项错误;C.,故原选项错误;D.,正确.故选D.2、A【分析】根据第一象限内横,纵坐标都为正,建立一个关于m的不等式组,解不等式组即可.【详解】∵点P(m,1﹣2m)在第一象限,,解得,故选:A.【点睛】本题主要考查象限内点的特点,掌握每个象限内点的特点是解题的关键.3、C【分析】根据直线系数k<0,可知y随x的增大而减小,x1<x1时,y1>y1.【详解】解:∵直线y=kx+b中k<0,∴函数y随x的增大而减小,∴当x1<x1时,y1>y1.故选:C.【点睛】本题主要考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b;当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.4、A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5、B【分析】根据方程的解满足方程,把解代入方程,可得一元一次方程,根据解方程,可得答案.【详解】把代入得:,解得.故选:B.【点睛】本题考查二元一次方程的解,理解解的概念,熟练掌握解方程.6、B【分析】利用中位线定理作出辅助线,利用三边关系可得MN的取值范围.【详解】连接BD,过M作MG∥AB,连接NG.∵M是边AD的中点,AB=3,MG∥AB,∴MG是△ABD的中位线,BG=GD,;∵N是BC的中点,BG=GD,CD=5,∴NG是△BCD的中位线,,在△MNG中,由三角形三边关系可知NG-MG<MN<MG+NG,即,∴,当MN=MG+NG,即MN=1时,四边形ABCD是梯形,故线段MN长的取值范围是1<MN≤1.故选B.【点睛】解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答.7、B【解析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.8、D【解析】试题解析:一次函数y=ax+b只有当x=1,y=1时才会出现a+b=1,∴它的图象必经过点(1,1).故选D.9、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.10、B【分析】先题提公因式xy,再用公式法因式分解,最后代入计算即可.【详解】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故答案为B.【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.11、C【解析】解:∠BAC=∠EAD,理由是:∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ACD和△ABE中,∵AC=AB,∠CAD=∠BAE,AD=AE,∴△ACD≌△ABE(SAS),选项A,选项B,选项D的条件都不能推出△ACD≌△ABE,只有选项C的条件能推出△ACD≌△ABE.故选C.【点睛】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.12、D【分析】根据全等三角形的判定定理分别进行分析即可.【详解】A.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.∵∠B=∠E,AB=DE,∴∆ABC≌∆DEF(SAS),故A不符合题意.B.∵AC∥DF,∴∠ACE=∠DFC,∴∠ACB=∠DFE(等角的补角相等)∵BF=CE,∠B=∠E,∴BF-CF=CE-CF,即BC=EF,∴∆ABC≌∆DEF(ASA),故B不符合题意.C.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.而∠A=∠D,∠B=∠E,∴∆ABC≌∆DEF(AAS),故C不符合题意.D.∵BF=CE,∴BF-CF=CE-CF,即BC=EF,而AC=DF,∠B=∠E,三角形中,有两边及其中一边的对角对应相等,不能判断两个三角形全等,故D符合题意.故选D.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每题4分,共24分)13、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】将0.000009用科学记数法表示应是.

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、1【分析】根据完全平方公式进行求解即可.【详解】解:∵,∴,∴,故答案为1.【点睛】本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.15、24.【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大22cm,∴可得BC=22cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=×22×4=24cm2.考点:2.三角形的面积;2.三角形三边关系.16、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.17、63°或27°.【解析】试题分析:等腰三角形分锐角和钝角两种情况,求出每种情况的顶角的度数,再利用等边对等角的性质(两底角相等)和三角形的内角和定理,即可求出底角的度数:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=×(180°-54°)=63°.(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,∵∠HFE=36°,∴∠HEF=90°-36°=54°,∴∠FEG=180°-54°=126°.∵EF=EG,∴∠EFG=∠G=×(180°-126°),=27°.考点:1.等腰三角形的性质;2.三角形内角和定理;分类思想的应用.18、a>﹣1【分析】根据二次根式和分式有意义的条件可得a+1>0,再解不等式即可.【详解】由题意得:a+1>0,解得:a>﹣1,故答案为:a>﹣1.【点睛】此题主要考查了二次根式和分式有意义,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.三、解答题(共78分)19、(1)0;(2);(3)9;(4).【分析】(1)根据二次根式的性质,绝对值的性质,正整数指数幂和开立方运算进行计算即可;(2)按照幂的乘方,同底数幂的乘方和合并同类项计算即可;(3)先对原代数式进行化简,然后通过对已知变形得出,然后整体代入即可求出答案;(4)按照平方差公式展开,然后发现中间项可以约分,最后只剩首尾两项,再进行计算即可.【详解】(1)原式.(2)原式.(3),.(4)原式【点睛】本题主要考查实数的混合运算,整式的乘法和加法混合运算,代数式求值和因式分解,掌握实数的混合运算法则,整式的乘法和加法混合运算顺序和法则,整体代入法和因式分解是解题的关键.20、(1)证明见解析;(1)2;(3)CD1+CE1=BC1,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.

(1)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.

(3)方法1、同(1)的方法即可得出结论;方法1、先判断出CD1+CE1=1(AP1+CP1),再判断出CD1+CE1=1AC1.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(1)如图1,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===2.(3)CD1、CE1、BC1之间的数量关系为:CD1+CE1=BC1,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=42°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=42°,∴∠BEC=∠BEA+∠AED=42°+42°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC1=BE1+CE1.∴BC1=CD1+CE1.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD1=(CP+PD)1=(CP+AP)1=CP1+1CP•AP+AP1,CE1=(EP﹣CP)1=(AP﹣CP)1=AP1﹣1AP•CP+CP1,∴CD1+CE1=1AP1+1CP1=1(AP1+CP1),∵在Rt△APC中,由勾股定理可知:AC1=AP1+CP1,∴CD1+CE1=1AC1.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB1+AC1=BC1,即1AC1=BC1,∴CD1+CE1=BC1.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(1)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.21、,当时,原式=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将适合的x的值代入计算即可求出值.【详解】原式====,∵满足的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=,当x=-2时,原式=.22、候选人将被录用【分析】按照的比例计算出三人的加权平均数,然后进行比较即可得解.【详解】解:∵候选人的综合成绩为:候选人的综合成绩为:候选人的综合成绩为:∴将计算机、商品知识和语言表达能力测试得分按的比例确定每人的成绩,则候选人的综合成绩最好,候选人将被录用.【点睛】本题考查了加权平均数的应用,熟练掌握加权平均数的算法是解题的关键.23、(1)证明见解析;(2).【分析】(1)先证得△ADB≌△CDB求得∠BCD=∠BAD,从而得到∠ADF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.【详解】(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5-x,∴AB2-BE2=AD2-DE2,即52-x2=62-(5-x)2解得:x=,∴,∴AC=2AE=.考点:1.平行四边形的判定;2.线段垂直平分线的性质;3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论