版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省苏州市吴中区达标名校中考数学适应性模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A. B. C. D.2.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断3.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为()A.a≥ B.a> C.a≤ D.a>4.如图,在中,分别在边边上,已知,则的值为()A. B. C. D.5.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>06.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.17.下列四个不等式组中,解集在数轴上表示如图所示的是()A. B. C. D.8.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠59.已知,下列说法中,不正确的是()A. B.与方向相同C. D.10.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是()A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.12.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.13.若式子有意义,则x的取值范围是_____.14.计算:=_______.15.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.16.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.三、解答题(共8题,共72分)17.(8分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?18.(8分)解不等式,并把解集在数轴上表示出来.19.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.20.(8分)计算:(1-n)0-|3-2|+(-)-1+4cos30°.21.(8分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客万人,扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是.22.(10分)一道选择题有四个选项.(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.23.(12分)已知PA与⊙O相切于点A,B、C是⊙O上的两点(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小24.对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.(1)当直线m的表达式为y=x时,①在点,,中,直线m的平行点是______;②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】210万=2100000,2100000=2.1×106,故选B.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、B【解题分析】
比较OP与半径的大小即可判断.【题目详解】,,,点P在外,故选B.【题目点拨】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.3、B【解题分析】
方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.【题目详解】①+②得:解得:故选:B.【题目点拨】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4、B【解题分析】
根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.【题目详解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:B.【题目点拨】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.5、C【解题分析】
分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.【题目详解】解:①a>1时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,②a<1时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,综上所述,表达式正确的是a(y1﹣y2)>1.故选:C.【题目点拨】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.6、C【解题分析】
根据基本作图的方法即可得到结论.【题目详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【题目点拨】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.7、D【解题分析】
此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【题目详解】由解集在数轴上的表示可知,该不等式组为,故选D.【题目点拨】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.8、B【解题分析】由内错角定义选B.9、A【解题分析】
根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【题目详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因为,所以;故该选项说法正确,故选:A.【题目点拨】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.10、C【解题分析】
根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.【题目详解】解:∵DE∥BC,∴=,BD≠BC,∴≠,选项A不正确;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,选项B不正确;∵EF∥AB,∴=,选项C正确;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,选项D不正确;故选C.【题目点拨】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,故答案为.12、【解题分析】
让黄球的个数除以球的总个数即为所求的概率.【题目详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.
故答案为:.【题目点拨】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.13、x≥﹣2且x≠1.【解题分析】由知,∴,又∵在分母上,∴.故答案为且.14、3【解题分析】
先把化成,然后再合并同类二次根式即可得解.【题目详解】原式=2.故答案为【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.15、3﹣1【解题分析】
通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.【题目详解】如图,当Q在对角线BD上时,BQ最小.连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).故答案为3﹣1.【题目点拨】本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.16、.【解题分析】
根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【题目详解】连续左转后形成的正多边形边数为:,则左转的角度是.故答案是:.【题目点拨】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.三、解答题(共8题,共72分)17、(1)乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4).【解题分析】
(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【题目详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P(一男一女)==.18、见解析【解题分析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上表示出来即可.【题目详解】解:去分母,得3x+1-6>4x-2,移项,得:3x-4x>-2+5,合并同类项,得-x>3,系数化为1,得x<-3,不等式的解集在数轴上表示如下:【题目点拨】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.19、(1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.【解题分析】
(1)利用中点坐标公式即可得出结论;
(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【题目详解】(1)∵点C是OA的中点,A(4,4),O(0,0),∴C,∴C(2,2);故答案为(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵点C是OA的中点,∴C(2,),∵点C,D(4,n)在双曲线上,∴,∴,∴反比例函数解析式为;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=﹣x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣x+1,设点E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1时,S△OEF最大,最大值为【题目点拨】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.20、1【解题分析】
根据实数的混合计算,先把各数化简再进行合并.【题目详解】原式=1+3-2-3+2=1【题目点拨】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.21、(1)50,43.2°,补图见解析;(2).【解题分析】
(1)由A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;
(2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【题目详解】解:(1)该市景点共接待游客数为:15÷30%=50(万人),
E景点所对应的圆心角的度数是:B景点人数为:50×24%=12(万人),
补全条形统计图如下:
故答案是:50,43.2o.
(2)画树状图可得:
∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
∴同时选择去同一个景点的概率=.22、(1);(2)【解题分析】
(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.【题目详解】解:(1)选中的恰好是正确答案A的概率为;
(2)画树状图:
共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
所以选中的恰好是正确答案A,B的概率=.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、(1)∠P=50°;(2)∠P=45°.【解题分析】
(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;
(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.【题目详解】解:(1)如图①,连接OB.∵PA、PB与⊙O相切于A、B点,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如图②,连接AB、AD,∵∠AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- IT行业就业安置协议
- 交通事故赔偿和解协议范本
- 动物行为课件教学课件
- 二手房交易合同示范模板
- 企业文化推广合作协议
- 企业环境健康安全咨询合作协议
- 交通运输事故报告标准
- 代建合同示范文本信息技术行业
- 交通安全HSE协议
- 二手房交易合同样本
- 2022年HJ1237机动车环检作业指导书
- 大唐之美通用模板
- ABS装置湿法挤出机系统存在的问题研究及对策的中期报告
- 《肉牛营养需要》教学课件
- 网易云音乐用户满意度调查问卷
- 雪佛兰爱唯欧说明书
- 经营分析报告案例-麦肯锡风格
- 2023春国开会计实务专题形考任务1-4题库及答案汇总
- 可疑值的取舍-Q检验法
- 生物信息学(上海海洋大学)知到章节答案智慧树2023年
- 核磁共振T临床应用
评论
0/150
提交评论