2024届山西省晋中学市榆次区中考冲刺卷数学试题含解析_第1页
2024届山西省晋中学市榆次区中考冲刺卷数学试题含解析_第2页
2024届山西省晋中学市榆次区中考冲刺卷数学试题含解析_第3页
2024届山西省晋中学市榆次区中考冲刺卷数学试题含解析_第4页
2024届山西省晋中学市榆次区中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省晋中学市榆次区中考冲刺卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A. B. C. D.2.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣83.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角4.在解方程-1=时,两边同时乘6,去分母后,正确的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)5.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90° B.120° C.60° D.30°6.下列实数中,有理数是()A. B. C.π D.7.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A. B. C. D.8.要使分式有意义,则x的取值范围是()A.x= B.x> C.x< D.x≠9.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=10.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm21.522.022.523.023.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数 B.加权平均数 C.众数 D.中位数11.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100° B.80° C.60° D.50°12.如果关于x的方程没有实数根,那么c在2、1、0、中取值是()A.; B.; C.; D..二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.14.已知a+1a=3,则a15.将ΔABC绕点B逆时针旋转到ΔA'BC'使A、B、C'在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为________cm16.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.17.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.18.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=(x<0)的图象经过点A,S△BEC=8,则k=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率50.26180.36714880.16合计1(1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.20.(6分)先化简,再求值:(m+2﹣)•,其中m=﹣.21.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?22.(8分)解不等式组,并写出其所有的整数解.23.(8分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).24.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.25.(10分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中≌,可知,求得______.如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.求证:.若,求的度数.26.(12分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线y=k(1)若m=-8,n=4,直接写出E、F的坐标;(2)若直线EF的解析式为y=3(3)若双曲线y=k27.(12分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2.①求的值;②若点G为AE上一点,求OG+EG最小值.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】

连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【题目详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的长为,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=故选:D.【题目点拨】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.2、A【解题分析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.3、C【解题分析】熟记反证法的步骤,然后进行判断即可.

解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;

A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;

B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;

C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;

D、由于无法说明两角具体的大小关系,故D错误.

故选C.4、D【解题分析】解:,∴3(x﹣1)﹣6=2(3x+1),故选D.点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.5、C【解题分析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.6、B【解题分析】

实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,等,很容易选择.【题目详解】A、二次根2不能正好开方,即为无理数,故本选项错误,

B、无限循环小数为有理数,符合;

C、为无理数,故本选项错误;

D、不能正好开方,即为无理数,故本选项错误;故选B.【题目点拨】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案.7、D【解题分析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.8、D【解题分析】

本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【题目详解】∵3x−7≠0,∴x≠.故选D.【题目点拨】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.9、D【解题分析】

依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【题目详解】A.正比例函数y=2x与x轴交于(0,0),不合题意;B.一次函数y=-3x+1与x轴交于(,0),不合题意;C.二次函数y=x2与x轴交于(0,0),不合题意;D.反比例函数y=与x轴没有交点,符合题意;故选D.10、C【解题分析】

根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【题目详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,

则商店经理的这一决定应用的统计量是这组数据的众数.

故选:C.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.11、B【解题分析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B12、A【解题分析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解题分析】

设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【题目详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,

∵OD⊥AB,

∴∠ACO=90°,

AC=BC=AB=4,

在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,

r=5,

∴AE=2r=10,

∵AE为⊙O的直径,

∴∠ABE=90°,

由勾股定理得:BE=6,

在Rt△ECB中,EC=.故答案是:.【题目点拨】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14、7【解题分析】

根据完全平方公式可得:原式=(a+115、4π【解题分析】分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案为4π.点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.16、2.04×1【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【题目详解】解:204000用科学记数法表示2.04×1.故答案为2.04×1.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、132°【解题分析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.18、1【解题分析】

∵BD是Rt△ABC斜边上的中线,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴∴AB•OB=BC•OE,∵S△BEC=×BC•OE=8,∴AB•OB=1,∴k=xy=AB•OB=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解题分析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c==50,a=50×0.2=10,b==0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.20、-2(m+3),-1.【解题分析】

此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【题目详解】解:(m+2-)•,=,=-,=-2(m+3).把m=-代入,得,原式=-2×(-+3)=-1.21、(1)y=-x+40(10≤x≤16);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解题分析】

根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【题目详解】(1)y=-x+40(10≤x≤16).(2)根据题意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴当x<25时,W随x的增大而增大∵10≤x≤16∴当x=16时,W取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【题目点拨】熟悉掌握图中所给信息以及列方程组是解决本题的关键.22、不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.【解题分析】

先求出不等式组的解集,即可求得该不等式组的整数解.【题目详解】由①得,x≥1,由②得,x<2.所以不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.【题目点拨】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23、CE的长为(4+)米【解题分析】

由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【题目详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题24、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解题分析】

(1)根据图形平移的性质画出平移后的△DEC即可;

(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【题目详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【题目点拨】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.25、阅读发现:90°;(1)证明见解析;(2)100°【解题分析】

阅读发现:只要证明,即可证明.拓展应用:欲证明,只要证明≌即可.根据即可计算.【题目详解】解:如图中,四边形ABCD是正方形,,,≌,,,,,,,故答案为为等边三角形,,.为等边三角形,,.四边形ABCD为矩形,,..,,.在和中,,≌.;≌,,.【题目点拨】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.26、(1)E(-3,4)、F(-5,0);(2)-334【解题分析】

(1)连接OE,BF,根据题意可知:BC=OA=8,BA=OC=4,设EC=x,则BE=OE=8-x,根据勾股定理可得:OC2+CE2(2)连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF为菱形,令y=0,则3x+3=0,解得x=-3,根据菱形的性质得OF=OE=BE=BF=3令y=n,则3x+3=n,解得x=n-33(3)设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出点E(m2-n22m , n)、F(即可求出tan∠EFO=-m【题目详解】解:(1)如图:连接OE,BF,E(-3,4)、F(-5,0)(2)连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE可证:△BGE≌△OGF(ASA)∴BE=OF∴四边形OEBF为菱形令y=0,则3x+3=0,解得x=-3令y=n,则3x+3=n,解得x=n-3在Rt△COE中,(-n-3解得n=3∴E(-3∴k=-(3)设EB=EO=x,则CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得x=-∴E(m2-n∴EF的中点为(m2将E(m2-n22mn(m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论