2024届山东省济宁嘉祥县联考八年级数学第一学期期末检测试题含解析_第1页
2024届山东省济宁嘉祥县联考八年级数学第一学期期末检测试题含解析_第2页
2024届山东省济宁嘉祥县联考八年级数学第一学期期末检测试题含解析_第3页
2024届山东省济宁嘉祥县联考八年级数学第一学期期末检测试题含解析_第4页
2024届山东省济宁嘉祥县联考八年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济宁嘉祥县联考八年级数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A. B.C. D.2.某种产品的原料提价,因而厂家决定对产品进行提价,现有种方案:①第一次提价,第二次提价;②第一次提价,第二次提价;③第一次、第二次提价均为.其中和是不相等的正数.下列说法正确的是()A.方案①提价最多 B.方案②提价最多C.方案③提价最多 D.三种方案提价一样多3.计算的结果是()A. B. C. D.4.关于的不等式的解集是,则的取值范围是()A. B. C. D.5.下列等式成立的是()A. B.(a2)3=a6 C.a2.a3=a6 D.6.若2m=a,32n=b,m,n均为正整数,则23m+10n的值为()A.ab B.ab C.a+b D.ab7.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为()A.4.5 B.5 C.5.5 D.68.下列说法正确的是()A.(-2)2的平方根是-2 B.-3是-9的负的平方根C.的立方根是2 D.(-1)2的立方根是-19.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)10.下列各式中,正确的是()A. B. C. D.11.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70° B.68° C.65° D.60°12.,是两个连续整数,若,则()A.7 B.9 C.16 D.11二、填空题(每题4分,共24分)13.如图,,则_________________.14.小明用加减消元法解二元一次方程组.由①②得到的方程是________.15.如图,在△ABC和△DEF中,∠B=40°,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S△ABC_____S△DEF.(填“>”或“=”或“<”).16.用四舍五入法将2.056精确到十分位的近似值为________.17.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为_________.18.若,,则的值为__________.三、解答题(共78分)19.(8分)已知:直线,为图形内一点,连接,.(1)如图①,写出,,之间的等量关系,并证明你的结论;(2)如图②,请直接写出,,之间的关系式;(3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).20.(8分)如图,在△ABC中,AB=AC,D为BC的中点,E,F两点分别在AB,AC边上且BE=CF.求证:DE=DF.21.(8分)如图,在平面直角坐标系中,直线分别交轴、轴于点和点,且,满足.(1)______,______.(2)点在直线的右侧,且:①若点在轴上,则点的坐标为______;②若为直角三角形,求点的坐标.22.(10分)已知直线AB:y=kx+b经过点B(1,4)、A(5,0)两点,且与直线y=2x-4交于点C.(1)求直线AB的解析式并求出点C的坐标;(2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.23.(10分)分解因式:(1)x3-4x2+4x;(2)(x+1)(x-4)+3x.24.(10分)如图,在平面直角坐标系中,点,点.(1)①画出线段关于轴对称的线段;②在轴上找一点使的值最小(保留作图痕迹);(2)按下列步骤,用不带刻度的直尺在线段找一点使.①在图中取点,使得,且,则点的坐标为___________;②连接交于点,则点即为所求.25.(12分)一支园林队进行某区域的绿化,在合同期内高效地完成了任务,这是记者与该队工程师的一段对话:如果每人每小时绿化面积相同,请通过这段对话,求每人每小时的绿化面积.26.解:

参考答案一、选择题(每题4分,共48分)1、D【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【详解】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.2、C【分析】方案①和②显然相同,用方案③的单价减去方案①的单价,利用完全平方公式及多项式乘以多项式的法则化简,去括号合并后再利用完全平方公式变形,根据不等于判定出其差为正数,进而确定出方案③的提价多.【详解】解:设,,则提价后三种方案的价格分别为:方案①:;方案②:;方案③:,方案③比方案①提价多:,和是不相等的正数,,,方案③提价最多.故选:C.【点睛】此题考查了整式混合运算的应用,比较代数式大小利用的方法为作差法,熟练掌握完全平方公式是解本题的关键.3、D【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.【详解】解:,故选D.【点睛】本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.4、C【分析】根据不等式的基本性质求解即可.【详解】∵关于的不等式的解集是,∴,解得:,故选:C.【点睛】本题主要考查了不等式的基本性质,解题的关键是熟记不等式的基本性质.5、B【分析】直接利用零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则分别化简得出答案.【详解】解:A、a0=1(a≠0),故此选项错误;

B、根据幂的乘方法则可得(a2)3=a6,正确;

C、根据同底数幂的乘法法则可得a2.a3=a5,故此选项错误;

D、根据积的乘方法则可得,故此选项错误;

故选:B.【点睛】此题主要考查了零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则等知识,正确掌握运算法则是解题关键.6、A【分析】根据幂的乘方与积的乘方计算法则解答.【详解】解:∵,,

∴,

∴,

故选A.【点睛】本题考查了幂的乘方与与积的乘方,熟记计算法则即可解答.7、C【解析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=AB=×11=1.1,∴DF=1.1.故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.8、C【分析】根据平方根的定义和立方根的定义逐一判断即可.【详解】A.(-2)2=4的平方根是±2,故本选项错误;B.-3是9的负的平方根,故本选项错误;C.=8的立方根是2,故本选项正确;D.(-1)2=1的立方根是1,故本选项错误.故选C.【点睛】此题考查的是平方根和立方根的判断,掌握平方根的定义和立方根的定义是解决此题的关键.9、D【分析】根据面积相等,列出关系式即可.【详解】解:由题意得这两个图形的面积相等,∴a2﹣b2=(a+b)(a-b).故选D.【点睛】本题主要考查对平方差公式的知识点的理解和掌握.掌握平方差公式的结构特征是解题的关键.10、D【分析】根据分式的基本性质逐一判断即可.【详解】A.当b≠0时,将分式的分子和分母同除以b,可得,故本选项错误;B.根据分式的基本性质,,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【点睛】此题考查的是分式的变形,掌握分式的基本性质是解决此题的关键.11、A【分析】本题考查的是全等三角形的性质和三角形内和的应用,由全等三角形对应角相等可证得∠C=∠D,∠AED=∠B,从而得∠1=∠CED,由全等三角形对应边相等可得AB=AE,可得∠B=∠AEB,所以∠AED=∠AEB,从而求出∠AED的度数.【详解】∵△ABC≌△AED,∴∠C=∠D,∴∠CED=∠1=40°,∵△ABC≌△AED,∴∠B=∠AED,AB=AE,∴∠B=∠AEB,∴∠AED=∠AEB,∴∠AED=(180°-∠CED)÷2=70°.故选A.【点睛】本题主要考查了全等三角形的性质和三角形内和的应用,掌握全等三角形的性质和三角形内和为180°是解题的关键.12、A【分析】根据,可得,求出a=1.b=4,代入求出即可.【详解】解:∵,∴,∴a=1.b=4,∴a+b=7,故选A.【点睛】本题考查了二次根式的性质和估算无理数的大小,关键是确定的范围.二、填空题(每题4分,共24分)13、【分析】根据等腰三角形三线合一性质求得∠CAD与∠ADC的度数,再根据AD=AE,利用三角形内角和定理可求得∠ADE的度数,从而不难求解.【详解】∵AB=AC,BD=CD,

∴AD平分∠BAC,AD⊥BC,

∴∠CAD=∠BAD=30°,∠ADC=90°.

∵AD=AE,

∴∠ADE=∠AED===75°,

∴∠CDE=∠ADC-∠ADE=90°-75°=15°.

∴故答案为:.【点睛】本题主要考查了等腰三角形的判定与性质,三角形内角和等知识点,熟练掌握等腰三角形的判定与性质是解题的关键.14、【分析】直接利用两式相减进而得出消去x后得到的方程.【详解】,①②得:.故答案为:.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.15、=【分析】分别表示出两个三角形的面积,根据面积得结论.【详解】接:过点D作DH⊥EF,交FE的延长线于点H,∵∠DEF=140°,∴∠DEH=40°.∴DH=sin∠DEH×DE=8×sin40°,∴S△DEF=EF×DH=20×sin40°过点A作AG⊥BC,垂足为G.∵AG=sin∠B×AB=5×sin40°,∴S△ABC=BC×AG=20×sin40°∴∴S△DEF=S△ABC故答案为:=【点睛】本题考查了锐角三角函数和三角形的面积求法.解决本题的关键是能够用正弦函数表示出三角形的高.16、2.1【分析】把百分位上的数字5进行四舍五入即可.【详解】解:2.056精确到十分位的近似值为2.1;故答案为:2.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.17、11【分析】连接AD,交EF于点M,根据的垂直平分线是可知CM=AM,求周长的最小值及求CM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小.【详解】解:连接AD,交EF于点M,∵△ABC为等腰三角形,点为边的中点,底边长为∴AD⊥BC,CD=3又∵面积是24,即,∴AD=8,又∵的垂直平分线是,∴AM=CM,∴周长=CM+DM+CD=AM+DM+CD∴求周长最小值即求AM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小,周长=AD+CD=8+3=11最小.【点睛】本题考查了利用轴对称变换解决最短路径问题,解题的关键是找出对称点,确定最小值的位置.18、【分析】根据(m+n)2=(m−n)2+4mn,把m−n=3,mn=5,解答出即可;【详解】根据(m+n)2=(m−n)2+4mn,把m−n=3,mn=5,得,(m+n)2=9+20=29∴=故答案为.【点睛】本题考查了完全平方公式,熟记完全平方公式及其变形,是正确解答的基础.三、解答题(共78分)19、(1),见解析;(2);(3),见解析【分析】(1)如图①,延长交于点,根据两直线平行,内错角相等可得,再根据三角形外角的性质即可得解;(2)如图②中,过P作PG∥AB,利用平行线的性质即可解决问题;(3)如图③,在利用外角的性质以及两直线平行,内错角相等的性质,即可得出.【详解】证明:(1)如图①,延长交于点.在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等)..(图①)(图②)(2)如图②中,过P作PG∥AB,∵AB//CD∴PG//CD∵AB//PG∴∠ABP+∠BPG=180°∵PG//CD∴∠GPD+∠PDC=180°∴∠ABP+∠BPG+∠GPD+∠PDC=360°∴故答案为:.(3)如图③.证明如下:(图③)在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等).【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.20、见解析【分析】由AB=AC,D是BC的中点,可得∠B=∠C,BD=CD,又由SAS,可判定△BED≌△CFD,继而证得DE=DF.【详解】证明:如图1.∵在△ABC中,,∴∠B=∠C,∵D为BC的中点,.在△BDE与△CDF中,∴△BDE≌△CDF,∴.【点睛】此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21、(1)-2,4;(2)①;②点的坐标为或.【分析】(1)利用非负数的的性质即可求出a,b;

(2)①利用等腰直角三角形的性质即可得出结论;

②分两种情况,利用等腰三角形的性质,及全等三角形的性质求出PC,BC,即可得出结论【详解】解:(1)由题意,得,所以且,解得,;(2)①如图,由(1)知,b=4,

∴B(0,4),

∴OB=4,

点P在直线AB的右侧,且在x轴上,

∵∠APB=45°,

∴OP=OB=4,

∴点的坐标为.②当时,过点作轴于点,则,,∴.又∵,,∴.∴.又∵,∴.∴,.∴.故点的坐标为.当时,作轴,于点,则,,∴.又∵,,∴,∴,又∵,∴.,.∴点的坐标为.故点的坐标为或.【点睛】本题为三角形综合题,考查非负数的的性质、等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.22、(1)y=-x+5;点C(3,2);(2)S=;(3)P点坐标为(2,3)或(4,1).【分析】(1)根据待定系数法求出直线AB解析式,再联立两函数解出C点坐标;(2)依次求出y=-x+5和y=2x-4与y轴交点坐标,根据三角形的面积公式即可求解;(3)设P点(m,-m+5)Q点坐标为(m,2m-4),根据线段PQ的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴解得∴直线AB的解析式为:y=-x+5;∵若直线y=2x-4与直线AB相交于点C,∴解得∴点C(3,2);(2)∵y=-x+5与y轴交点坐标为(0,5),y=2x-4与y轴交点坐标为(0,-4),C点坐标为(3,2)∴S=(3)设P点(m,-m+5)Q点坐标为(m,2m-4)则-m+5-(2m-4)=3或者2m-4-(-m+5)=3解得m=2或m=4∴P点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.23、(1)x(x-2)2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论