2024届河北省鸡泽县数学八上期末学业质量监测模拟试题含解析_第1页
2024届河北省鸡泽县数学八上期末学业质量监测模拟试题含解析_第2页
2024届河北省鸡泽县数学八上期末学业质量监测模拟试题含解析_第3页
2024届河北省鸡泽县数学八上期末学业质量监测模拟试题含解析_第4页
2024届河北省鸡泽县数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省鸡泽县数学八上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.与是同类二次根式的是()A. B. C. D.2.下列整式的运算中,正确的是()A. B.C. D.3.一种新型病毒的直径约为0.000023毫米,用科学记数法表示为()毫米.A.0.23×10﹣6 B.2.3×106 C.2.3×10﹣5 D.2.3×10﹣44.已知函数是正比例函数,且图像在第二、四象限内,则的值是()A.2 B. C.4 D.5.下列实数中,无理数是()A. B.-0.3 C. D.6.一个等腰三角形的两边长分别为4厘米、9厘米,则这个三角形的周长为()A.17或22 B.22 C.13 D.17或137.在中,,点是边上两点,且垂直平分平分,则的长为()A. B. C. D.8.如图,中,,,则的度数为()A. B. C. D.9.若三角形三个内角度数之比为2:3:7,则这个三角形一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形10.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则方程组的解是______.12.小明用计算一组数据的方差,那么=____.13.如图所示,一只蚂蚁从点沿数轴向右直爬2个单位到达点,点表示,设点所表示的数为,则的值是__________.14.的立方根为______.15.已知关于的不等式有解,则实数的取值范围是______.16.如图,直线y=x+1与直线y=mx-n相交于点M(1,b),则关于x,y的方程组的解为:________.

17.的倒数是____.18.若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.三、解答题(共66分)19.(10分)学校组织学生到距离学校5的县科技馆去参观,学生小明因事没能乘上学校的班车,于是准备在校门口乘出租车去县科技馆,出租车收费标准如下:里程收费/元3以下(含3)8.003以上(每增加1)2.00(1)出租车行驶的里程为(,为整数),请用的代数式表示车费元;(2)小明身上仅有14元钱,够不够支付乘出租车到科技馆的车费?请说明理由.20.(6分)问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).21.(6分)老师在黑板上书写了一个式子的正确计算结果随后用手遮住了原式的一部分,如图.(1)求被手遮住部分的式子(最简形式);(2)原式的计算结果能等于一1吗?请说明理由.22.(8分)先化简,再求值:,其中m=9.23.(8分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=24.(8分)某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).(1)设每天运输的货物吨数n(单位:吨),求需要的天数;(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.25.(10分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.26.(10分)如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式,可得答案.【详解】解:A、=,故A错误;

B、与不是同类二次根式,故B错误;

C、,故C错误;

D、,故D正确;

故选:D.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.2、D【分析】根据同底数幂的乘法,积的乘方,幂的乘方逐一判断即可.【详解】解:A、,故A错误;B、,故B错误;C、与不是同类项,不能合并,故C错误;D、,正确,故答案为:D.【点睛】本题考查了底数幂的乘法,积的乘方,幂的乘方,解题的关键是掌握幂的运算法则.3、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000023=2.3×10﹣1.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、C【分析】根据正比例函数的定义解答即可.【详解】∵函数是正比例函数,∴,得m=2或m=4,∵图象在第二、四象限内,∴3-m,∴m,∴m=4,故选:C.【点睛】此题考查正比例函数的定义、性质,熟记定义并掌握正比例函数的特点即可解答问题.5、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、是有理数,故A错误;

B、-0.3是有理数,故B错误;

C、是无理数,故C正确;

D、=3,是有理数,故D错误;

故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为4cm和9cm,而没有明确腰、底分别是多少,所以要进行分类讨论,还要用三角形的三边关系验证能否组成三角形.【详解】解:分类讨论:情况一:若4厘米为腰长,9厘米为底边长,由于4+4<9,则三角形不存在;情况二:若9厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22(厘米).故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,最后养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7、A【分析】根据CE垂直平分AD,得AC=CD,再根据等腰在三角形的三线合一,得,结合角平分线定义和,得,则.【详解】∵CE垂直平分AD∴AC=CD=6cm,∵CD平分∴∴∴∴∴故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.8、B【分析】设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,

∴∠B+19°=x+14°,

∴∠B=x-5°,

∵AB=AC,

∴∠C=∠B=x-5°,

∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,

∵AD=DE,

∴∠DEA=∠DAE=x+9°,

在△ADE中,由三角形内角和定理可得

x+x+9°+x+9°=180°,

解得x=54°,即∠ADE=54°,

∴∠DAE=63°

故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.9、C【分析】根据三角形内角和180°来计算出最大的内角度数,然后来判断三角形的形状.【详解】解:三角形三个内角度数之比为2:3:7,三角形最大的内角为:.这个三角形一定为钝角三角形.故选:C.【点睛】本题主要考查三角形内角和180°,计算三角形最大内角是解题关键.10、A【解析】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:.故选A.二、填空题(每小题3分,共24分)11、【分析】利用“方程组的解就是两个相应的一次函数图象的交点坐标”解决问题.【详解】解:∵点P(4,﹣6)为函数y=2x+b与函数y=kx﹣3的图象的交点,∴方程组的解为.故答案为.【点睛】本题考查方程组的解就是两个相应的一次函数图象的交点坐标,将方程组的解转化为图像的交点问题,属于基础题型.12、1【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解.【详解】解:由题意可得,这组数据共10个数,且它们的平均数是3∴=10×3=1故答案为:1.【点睛】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=.13、【分析】先根据数轴上点的平移的性质求得m,将m的值代入,根据绝对值的性质()进行化简即可.【详解】解:由题意知,A点和B点的距离为2,A的坐标为,∴B点的坐标为;∴.故答案为:.【点睛】本题考查实数与数轴,化简绝对值,无理数的估算.能估算的正负,并且根据绝对值的意义化简是解决此题的关键.14、【解析】根据立方根的定义求解可得.【详解】解:,的立方根为,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.15、【分析】先根据绝对值的意义求出的取值范围,然后根据不等式组解集的确定方法求解即可.【详解】由绝对值的意义可知:是表示数轴上数x对应的点到和对应点的距离之和,则,不等式有解,,即的取值范围是.故答案为:.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.16、【分析】首先利用待定系数法求出b的值,进而得到M点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】∵直线y=x+1经过点M(1,b),

∴b=1+1,

解得b=2,

∴M(1,2),

∴关于x的方程组的解为,

故答案为.【点睛】此题考查二元一次方程组与一次函数的关系,解题关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.17、.【分析】由倒数的定义可得的倒数是,然后利用分母有理化的知识求解即可求得答案.【详解】∵.∴的倒数是:.故答案为:.【点睛】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.18、1【解析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】180°-144°=36°,360°÷36°=1,∴这个多边形的边数是1,故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.三、解答题(共66分)19、(1);(2)够,理由详见解析.【分析】(1)因为里程3以下(含3)时,收费8.00元,3以上时,每增加1需多收费2.00元,所以出租车行驶的里程为(,为整数)时候,付给出租车的费用:;(2)令,求出出租车的费用,再与14作比较即可作出判断.【详解】解:(1)里程3以下(含3)时,收费8.00元,3以上时,每增加1需多收费2.00元..(2)够,理由如下:令,(元).由于小明身上仅有14元钱,大于需要支付乘出租车到科技馆的车费12元钱,故够支付乘出租车到科技馆的车费.【点睛】本题主要考查列代数式,解题的关键是根据题意写出相应的代数式进行求解.20、(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形,【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(2)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD=DE.证明:∵是等边三角形∴AB=BC,∵DF∥AC∴,∠BDF=∠BCA∴∴是等边三角形,∴DF=BD∵点D是BC的中点∴BD=CD∴DF=CD∵CE是等边的外角平分线∴∵是等边三角形,点D是BC的中点∴AD⊥BC∴∵∴在与中∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F∵是等边三角形∴AB=BC,∵DF∥AC∴∴∴是等边三角形,∴BF=BD∴AF=DC∵CE是等边的外角平分线∴∵∠ADC是的外角∴∵∴∠FAD=∠CDE在与中∴∴AD=DE;(3)如下图,是等边三角形.证明:∵∴∵CE平分∴CE垂直平分AD∴AE=DE∵∴是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.21、(1);(2)不能,理由见解析【分析】(1)设被手遮住部分的式子为A,代入求值即可;(2)不能,根据分式有意义的条件证明即可.【详解】(1)设被手遮住部分的式子为A,由题意得(2)不能等于-1.由题意可得:若解得:当时,原式的除式为0,无意义.故原式的计算结果不能等于.【点睛】本题考查了分式的混合运算,掌握分式混合运算的法则、分式有意义的条件是解题的关键.22、【解析】试题分析:原式可以化为,当时,原式考点:完全平方公式、平方差公式的计算点评:本题考查的是完全平方公式、平方差公式的简单运算规律23、(1)详见解析;(2)不变,AE=CG,详见解析;(3)CM【分析】(1)如图①,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(2)如图②,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出结论;(3)如图③,根据等腰直角三角形的性质可以得出∠BCD=∠ACD=45°,根据直角三角形的三角形的性质就可以得出∠BCE=∠CAM,由ASA就可以得出△BCE≌△CAM,就可以得出结论.【详解】(1)证明:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴∠BCD=∠ACD=45°,∴∠A=∠BCD.在△BCG和△CAE中,∴△BCG≌△CAE(ASA),∴AE=CG.(2)解:不变,AE=CG理由如下:∵AC=BC,∴∠ABC=∠A.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵BF⊥CE,∴∠BFC=90°,∴∠CBF+∠BCE=90°,∴∠ACE=∠CBF.∵CD⊥AB,∠ABC=∠A=45°,∴∠BCD=∠ACD=45°,∴∠A=∠BCD.在△BCG和△CAE中,∴△BCG≌△CAE(ASA),∴AE=CG.(3)BE=CM,理由如下:∵AC=BC,∴∠ABC=∠CAB.∵∠ACB=90°,∴∠ABC=∠A=45°,∠ACE+∠BCE=90°.∵AH⊥CE,∴∠AHC=90°,∴∠HAC+∠ACE=90°,∴∠BCE=∠HAC.∵在RT△ABC中,CD⊥AB,AC=BC,∴∠BCD=∠ACD=45°∴∠ACD=∠ABC.在△BCE和△CAM中,∴△BCE≌△CAM(ASA),∴BE=CM,故答案为:CM.【点评】本题考查了等腰直角三角形的性质的运用,等式的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.24、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论