版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省宿州埇桥区教育集团四校联考八年级数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若一次函数与的图象交轴于同一点,则的值为()A. B. C. D.2.已知等腰三角形的一个外角是110〫,则它的底角的度数为()A.110〫 B.70〫 C.55〫 D.70〫或55〫3.9的平方根是()A. B. C.3 D.-34.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A. B. C. D.5.点(﹣1,2)关于x轴对称的点的坐标是()A.(1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,﹣1)6.如图,在平面直角坐标系中,直线AC:y=kx+b与x轴交于点B(-2,0),与y轴交于点C,则“不等式kx+b≥0的解集”对应的图形是()A.射线BD上的点的横坐标的取值范围 B.射线BA上的点的横坐标的取值范围C.射线CD上的点的横坐标的取值范围 D.线段BC上的点的横坐标的取值范围7.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.1.4cm2 B.1.5cm2 C.1.6cm2 D.1.7cm28.下列说法:①无理数都是无限小数;②的算术平方根是3;③数轴上的点与实数一一对应;④平方根与立方根等于它本身的数是0和1;⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3).其中正确的个数是()A.1个 B.2个 C.3个 D.4个9.等于()A. B. C. D.10.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72° B.45° C.36° D.30°二、填空题(每小题3分,共24分)11.已知是完全平方式,则__________.12.计算:0.09的平方根是________.13.如图,直线,被直线所截,若直线,,则____.14.若分式有意义,则x的取值范围为_____.15.已知,如图,AD=AC,BD=BC,O为AB上一点,那么图中共有___对全等三角形.16.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.17.若m>n,则m-n_____0.(填“>”“<”“=”)18.9的平方根是_________.三、解答题(共66分)19.(10分)某服装店用4500元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价一进价),这两种服装的进价、标价如表所示类型价格A型B型进价(元/件)60100标价(元/件)100160(1)请利用二元一次方程组求A,B两种新式服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?20.(6分)如图,已知∠AOB,以O为圆心,以任意长为半径作弧,分别交OA,OB于F,E两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线OP,过点F作FD∥OB交OP于点D.(1)若∠OFD=116°,求∠DOB的度数;(2)若FM⊥OD,垂足为M,求证:△FMO≌△FMD.21.(6分)如图,中,,点D为边AC上一点,于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若,求的大小;22.(8分)若关于x的分式方程=1的解为正数,求m的取值范围.23.(8分)如图,在中,,为边上的任意点,为线段的中点,.(1)求证:;(2)求证:.24.(8分)用配方法解方程:.25.(10分)计算:(1)(2).26.(10分)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.
参考答案一、选择题(每小题3分,共30分)1、D【分析】本题先求与x轴的交点,之后将交点坐标代入即可求得b的值.【详解】解:在函数中当时,求得,故交点坐标为,将代入,求得;选:D.【点睛】本题注意先求出来与x轴的交点,这是解题的关键.2、D【分析】根据等腰三角形的一个外角等于110°,进行讨论可能是底角的外角是110°,也有可能顶角的外角是110°,从而求出答案.【详解】解:①当110°外角是底角的外角时,底角为:180°-110°=70°,②当110°外角是顶角的外角时,顶角为:180°-110°=70°,则底角为:(180°-70°)×=55°,∴底角为70°或55°.故选:D.【点睛】此题主要考查了等腰三角形的性质,应注意进行分类讨论,熟练应用是解题的关键.3、A【分析】利用平方根定义计算即可得到结果.【详解】解:∵(±3)2=9,∴9的平方根是±3,故选A【点睛】此题考查了平方根,熟练掌握平方根定义是解本题的关键.4、A【解析】试题分析:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.考点:剪纸问题.5、C【解析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】点(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6、A【分析】根据图象即可得出不等式kx+b≥0的解集,从而判断出结论.【详解】解:由图象可知:不等式kx+b≥0的解集为x≤-2∴“不等式kx+b≥0的解集”对应的图形是射线BD上的点的横坐标的取值范围故选A.【点睛】此题考查的是根据一次函数的图象和不等式,求自变量的取值范围,掌握利用一次函数的图象,解一元一次不等式是解决此题的关键.7、B【详解】延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=91°,∴△ABP≌△BEP,∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=1.5,故选B.考点:1.等腰三角形的判定与性质;2.三角形的面积.8、C【分析】根据无理数的定义判断①;根据算术平方根的定义判断②;根据实数与数轴的关系判断③;根据平方根与立方根的定义判断④;根据关于x轴对称的点的坐标特点判断⑤.【详解】①无理数都是无限小数,正确;
②的算术平方根是,错误;
③数轴上的点与实数一一对应,正确;
④平方根与立方根等于它本身的数是0,错误;
⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3),正确.
故选:C.【点睛】此题考查无理数的定义,算术平方根的定义,实数与数轴的关系,平方根与立方根的定义,关于x轴对称的点的坐标特点,解题关键在于需熟练掌握各性质定义.9、D【解析】根据负整数指数幂的运算法则计算即可.【详解】解:.故选:D.【点睛】本题考查了负整数指数幂的运算法则,属于应知应会题型,熟知负整数指数幂的运算法则是解题关键.10、C【解析】试题分析:根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C考点:三角形的内角和二、填空题(每小题3分,共24分)11、±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵是一个完全平方式,∴m=±1.故答案为±1.【点睛】本题主要考查的是完全平方式,熟练掌握完全平方式的特点是解题的关键.12、【分析】根据平方根的定义即可求解.【详解】0.09的平方根是故答案为:.【点睛】此题主要考查平方根,解题的关键是熟知其定义.13、【分析】本题主要利用两直线平行,同位角相等;以及邻补角的定义进行做题.【详解】∵a∥b,∴∠1=∠3=,∵∠3与∠2互为邻补角,∴∠2=.故答案为:.【点睛】本题重点考查了平行线的性质及邻补角的定义,是一道较为简单的题目.14、x≥﹣1且x≠1.【解析】根据被开方式是非负数,且分母不等于零列式求解即可.【详解】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1且x≠1,故答案为x≥﹣1且x≠1.【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.15、1【解析】试题分析:由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共1对.找寻时要由易到难,逐个验证.试题解析:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有1对全等三角形.故答案为1.考点:全等三角形的判定.16、如果两条直线平行于同一条直线,那么这两条直线平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.17、【分析】根据不等式的性质即可得.【详解】两边同减去n得,,即故答案为:.【点睛】本题考查了不等式的性质:两边同减去一个数,不改变不等号的方向,熟记性质是解题关键.18、±1【解析】分析:根据平方根的定义解答即可.详解:∵(±1)2=9,∴9的平方根是±1.故答案为±1.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共66分)19、(1)A种新式服装购进25件,B种新式服装购进30件;(2)1210元【分析】(1)设A种新式服装购进x件,B种新式服装购进y件,根据4500元购进的两种服装销售完后毛利润为2800元,即可得出关于x,y的二元一次方程组,即可求解;(2)根据减少的收入=每件服装少卖的价格×销售数量,即可求解.【解答】解:【详解】(1)设A种新式服装购进x件,B种新式服装购进y件,依题意得:,解得:.答:A种新式服装购进25件,B种新式服装购进30件;(2)100×(1﹣0.9)×25+160×(1﹣0.8)×30=1210(元).答:这批服装全部售完后,服装店比按标价出售少收入1210元.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出二元一次方程组,是解题的关键.20、(1)32°;(2)见解析.【解析】(1)首先根据OB∥FD,可得∠OFD+∠AOB=18O°,进而得到∠AOB的度数,再根据作图可知OP平分∠AOB,进而算出∠DOB的度数即可;(2)首先证明∴∠AOD=∠ODF,再由FM⊥0D可得∠OMF=∠DMF,再加上公共边FM=FM可利用AAS证明△FMO≌△FMD.【详解】(1)∵OB∥FD,∴∠OFD+∠AOB=18O°,又∵∠OFD=116°,∴∠AOB=180°﹣∠OFD=180°﹣116°=64°,由作法知,OP是∠AOB的平分线,∴∠DOB=∠AOB=32°;(2)证明:∵OP平分∠AOB,∴∠AOD=∠DOB,∵OB∥FD,∴∠DOB=∠ODF,∴∠AOD=∠ODF,又∵FM⊥OD,∴∠OMF=∠DMF,在△MFO和△MFD中,∴△MFO≌△MFD(AAS).【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.21、(1)见解析;(2)100°【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)先根据题意,得出∠ABC的度数;再根据等边对等角及三角形外角得出∠CMD=2∠CBM及∠DME=2∠EBM,从而求出∠CME的度数后即可得出答案.【详解】解:(1)∵M为BD中点,在Rt△DCB中,MC=BD,在Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°.【点睛】本题考查了直角三角形斜边的中线、三角形外角,等腰三角形等边对等角等知识,熟练掌握性质定理是解题的关键.22、m>2且m≠1.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【详解】解:去分母得:m﹣1=x﹣1,解得:x=m﹣2,由分式方程的解为正数,得到m﹣2>0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新兴社区太阳能路灯推广方案
- 大学生心理健康管理制度
- 地暖节能改造方案及服务支持
- 环保单位有限空间作业应急管理制度
- 救援机构疫情防控应急演练方案
- 2024年建筑工程咨询合同:专业建议与服务的协议
- 物流中心屋面彩钢板防水施工方案
- 2024原材料采购合同协议书(长期合作)
- 国庆主题手工艺品制作方案
- 住宅小区独立基础设计方案
- 心理健康家长会(课件)-小学生主题班会通用版
- 新生适应性成长小组计划书
- 08SS523建筑小区塑料排水检查井
- 教学评一体化的教学案例 课件
- 父亲去世讣告范文(通用12篇)
- 人教版八年级上Unit 2How often do you exercise Section A(Grammar Focus-3c)
- 导读工作总结优秀范文5篇
- SB/T 10851-2012会议中心运营服务规范
- JJF 1916-2021扫描电子显微镜校准规范
- GB/T 6587-2012电子测量仪器通用规范
- GB/T 4162-2008锻轧钢棒超声检测方法
评论
0/150
提交评论