2024届广西贵港市覃塘区重点名校中考数学猜题卷含解析_第1页
2024届广西贵港市覃塘区重点名校中考数学猜题卷含解析_第2页
2024届广西贵港市覃塘区重点名校中考数学猜题卷含解析_第3页
2024届广西贵港市覃塘区重点名校中考数学猜题卷含解析_第4页
2024届广西贵港市覃塘区重点名校中考数学猜题卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年广西贵港市覃塘区重点名校中考数学猜题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×10102.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<13.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分4.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4 C.2:3 D.4:95.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()A.众数 B.中位数 C.平均数 D.方差6.已知二次函数的图象如图所示,则下列说法正确的是()A.<0 B.<0 C.<0 D.<07.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. B. C.2 D.28.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A. B. C. D.9.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.2 C. D.210.下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.4二、填空题(共7小题,每小题3分,满分21分)11.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.12.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.13.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.14.分解因式:x2y﹣xy2=_____.15.化简:①=_____;②=_____;③=_____.16.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.17.一元二次方程x2=3x的解是:________.三、解答题(共7小题,满分69分)18.(10分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点.求抛物线的表达式;若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标.19.(5分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.20.(8分)在中,,是边的中线,于,连结,点在射线上(与,不重合)(1)如果①如图1,②如图2,点在线段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想、之间的数量关系,并证明你的结论;(2)如图3,若点在线段的延长线上,且,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出、、三者的数量关系(不需证明)21.(10分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.22.(10分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称,CD⊥x轴于点D,△ABD的面积为8.(1)求m,n的值;(2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.23.(12分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21元?24.(14分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:334亿=3.34×1010“点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、A【解题分析】

根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【题目详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3、C【解题分析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、A【解题分析】试题解析:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,故选A.点睛:角平分线上的点到角两边的距离相等.5、B【解题分析】

由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.【题目详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.故选B.【题目点拨】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.6、B【解题分析】

根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.【题目详解】解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵->0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选B.【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.7、D【解题分析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【题目详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为BC•AD==,S扇形BAC==,∴莱洛三角形的面积S=3×﹣2×=2π﹣2,故选D.【题目点拨】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.8、C【解题分析】A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,故选C.9、B【解题分析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.10、B【解题分析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图二、填空题(共7小题,每小题3分,满分21分)11、8.03×106【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.12、,+2.【解题分析】

当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【题目详解】当点P旋转至CA的延长线上时,如图2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中点是F,∴CF=BP=.取AB的中点M,连接MF和CM,如图2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M为AB中点,∴CM=AB=,∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,∴AP=AD=4,∵M为AB中点,F为BP中点,∴FM=AP=2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=+2.故答案为,+2.【题目点拨】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.13、1【解题分析】

先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【题目详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【题目点拨】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.14、xy(x﹣y)【解题分析】原式=xy(x﹣y).故答案为xy(x﹣y).15、455【解题分析】

根据二次根式的性质即可求出答案.【题目详解】①原式=4;②原式==5;③原式==5,故答案为:①4;②5;③5【题目点拨】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16、4【解题分析】

∵AB=2cm,AB=AB1,∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.17、x1=0,x2=1【解题分析】

先移项,然后利用因式分解法求解.【题目详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【题目点拨】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解三、解答题(共7小题,满分69分)18、为;点Q的坐标为或.【解题分析】

依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【题目详解】抛物线顶点A的横坐标是,,即,解得..将代入得:,抛物线的解析式为.抛物线向下平移了4个单位.平移后抛物线的解析式为,.,点O在PQ的垂直平分线上.又轴,点Q与点P关于x轴对称.点Q的纵坐标为.将代入得:,解得:或.点Q的坐标为或.【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.19、(1)见解析(2)25【解题分析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53连接EF交于点O,∴AC⊥EF于点O,点O是AC中点.∴OE=12∴EF=53∴菱形AECF的面积是12AC·EF=25考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.20、(1)①60;②.理由见解析;(2),理由见解析.【解题分析】

(1)①根据直角三角形斜边中线的性质,结合,只要证明是等边三角形即可;②根据全等三角形的判定推出,根据全等的性质得出,(2)如图2,求出,,求出,,根据全等三角形的判定得出,求出,推出,解直角三角形求出即可.【题目详解】解:(1)①∵,,∴,∵,∴,∴是等边三角形,∴.故答案为60.②如图1,结论:.理由如下:∵,是的中点,,,∴,,∴,,,∴,∵,∴,∵线段绕点逆时针旋转得到线段,∴,在和中,∴,∴.(2)结论:.理由:∵,是的中点,,,∴,,∴,,,∴,∵,∴,∵线段绕点逆时针旋转得到线段,∴,在和中,∴,∴,而,∴,在中,,∴,∴,∴,即.【题目点拨】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出是解此题的关键,综合性比较强,证明过程类似.21、(1);(2)或1.【解题分析】

(1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.【题目详解】(1)当时,有,,由方程,解得,即.由方程,解得,即.因为为线段上一点,所以.(2)解方程,得,即.解方程,得,即.①当为线段靠近点的三等分点时,则,即,解得.②当为线段靠近点的三等分点时,则,即,解得.综上可得,或1.【题目点拨】本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.22、(1)m=8,n=-2;(2)点F的坐标为,【解题分析】分析:(1)利用三角形的面积公式构建方程求出n,再利用待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b与x轴,y轴的交点分别为,.②图中,当k>0时,设直线y=kx+b与x轴,y轴的交点分别为点,.详解:(1)如图②∵点A的坐标为,点C与点A关于原点O对称,∴点C的坐标为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论