重庆市九龙坡区育才中学2024届中考数学五模试卷含解析_第1页
重庆市九龙坡区育才中学2024届中考数学五模试卷含解析_第2页
重庆市九龙坡区育才中学2024届中考数学五模试卷含解析_第3页
重庆市九龙坡区育才中学2024届中考数学五模试卷含解析_第4页
重庆市九龙坡区育才中学2024届中考数学五模试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市九龙坡区育才中学2024年中考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形2.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2π B.4π C.6π D.8π3.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()A.众数 B.中位数 C.平均数 D.方差4.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关5.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)6.下列计算正确的是()A.x4•x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=17.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥48.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°9.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°10.如果向北走6km记作+6km,那么向南走8km记作()A.+8kmB.﹣8kmC.+14kmD.﹣2km二、填空题(本大题共6个小题,每小题3分,共18分)11.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.12.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.13.估计无理数在连续整数___与____之间.14.计算的结果是______.15.方程的根是__________.16.在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为__________.三、解答题(共8题,共72分)17.(8分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202请根据以上图表,解答下列问题:填空:这次被调查的同学共有人,a+b=,m=;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(8分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值19.(8分)计算:×(2﹣)﹣÷+.20.(8分)计算:()-1+()0+-2cos30°.21.(8分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.22.(10分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?23.(12分)已知关于x的一元二次方程为常数.求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值.24.已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】

根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确.故选D.【题目点拨】本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.2、B【解题分析】

先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.【题目详解】在△ABC中,依据勾股定理可知AB==8,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积==4π.故选:B.【题目点拨】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.3、B【解题分析】

由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.【题目详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.故选B.【题目点拨】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.4、A【解题分析】【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.【题目详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,所以,y随x的增大而减小.因为,1<4,所以,a>b.故选A【题目点拨】本题考核知识点:一次函数性质.解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.5、B【解题分析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5,),∴B3的坐标为(1.5+1322,),故选B.点睛:本题是规律题,能正确地寻找规律“每翻转6次,图形向右平移2”是解题的关键.6、D【解题分析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);(a6)考点:1、幂的运算;2、完全平方公式;3、算术平方根.7、A【解题分析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.8、A【解题分析】

如图,过点C作CD∥a,再由平行线的性质即可得出结论.【题目详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【题目点拨】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.9、D【解题分析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则2r·πr180考点:圆锥的计算.10、B【解题分析】

正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【题目详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.【题目点拨】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】

根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.【题目详解】∵数据x1,x2,x3,x4,x5的平均数是3,∴x1+x2+x3+x4+x5=15,则新数据的平均数为=1,故答案为:1.【题目点拨】本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.12、【解题分析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、34【解题分析】

先找到与11相邻的平方数9和16,求出算术平方根即可解题.【题目详解】解:∵,∴,∴无理数在连续整数3与4之间.【题目点拨】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.14、【解题分析】

二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【题目详解】.【题目点拨】考点:二次根式的加减法.15、1.【解题分析】

把无理方程转化为整式方程即可解决问题.【题目详解】两边平方得到:2x﹣1=1,解得:x=1,经检验:x=1是原方程的解.故答案为:1.【题目点拨】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.16、或【解题分析】

设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.【题目详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.

∵直线y=2x-1与x轴交点为C,与y轴交点为A,

∴点A(0,-1),点C(,0),

∴OA=1,OC=,AC==,

∴cos∠ACO==.

∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,

∴∠BAD=∠ACO.

∵AD=3,cos∠BAD==,

∴AB=3.

∵直线y=2x-b与y轴的交点为B(0,-b),

∴AB=|-b-(-1)|=3,

解得:b=1-3或b=1+3.

故答案为1+3或1-3.【题目点拨】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.三、解答题(共8题,共72分)17、50;28;8【解题分析】【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【题目详解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)×360°=40%×360°=144°.即扇形统计图中扇形C的圆心角度数为144°;(3)1000×=560(人).即每月零花钱的数额x元在60≤x<120范围的人数为560人.【题目点拨】本题考核知识点:统计图表.解题关键点:从统计图表获取信息,用样本估计总体.18、(1)甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2)共有四种方案;(3)当m=80时,w始终等于8000,取值与a无关【解题分析】

(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;【题目详解】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,,解得,(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a为自然数,∴有a为7、8、9、10共四种方案,(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,当m=80时,w始终等于8000,取值与a无关.【题目点拨】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.19、5-【解题分析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式=3×(2-)-+=6--+=5-点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.20、4+2.【解题分析】

原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【题目详解】原式=3+1+3-2×=4+2.21、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【解题分析】

(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.【题目详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得,,∴m=1200,经检验,m=1200是原分式方程的解,也符合题意,∴m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵,∴33≤x≤38,∵x为正整数,∴x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,当100<k<150时,y1随x的最大而增大,∴x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0<k<100时,y1随x的最大而减小,∴x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【题目点拨】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.22、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.【解题分析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.(1)设甲种套房每套提升费用为x万元,依题意,得625解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元.(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48≤m≤50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升1.套方案三:甲种套房提升50套,乙种套房提升30套.设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3时,三种方案的费用一样,都是2240万元.当a>3时,取m=48时费用W最省.当0<a<3时,取m=50时费用最省.考点:1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.23、(1)详见解析;(2)的值为3或1.【解题分析】

(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【题目详解】证明:原方程可化为,,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论