版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市苍南县2019届九年级第二次质量测试数学试题一.选择题(每小题4分,满分40分)1.﹣2019的相反数是()A.﹣2019 B.﹣ C.2019 D.2.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104 B.4.9×105 C.0.49×104 D.49×1043.下列是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A.朝上的点数为2 B.朝上的点数为7 C.朝上的点数不小于2 D.朝上的点数为3的倍数4.由若干个大小相同的小正方体组成的几何体的三视图如图,则这个几何体只能是()A. B. C. D.5.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<46.直线y1=k1x+b1与直线y2=k2x+b2交于(1,3),若﹣3≤k1x+b1≤k2x+b2,则x的取值范围是()A.x≤﹣1 B.﹣5<x≤1 C.﹣5≤x<﹣1 D.﹣1≤x≤17.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A. B. C. D.8.A,B是⊙O上的两点,OA=1,的长是,则∠AOB的度数是()A.30 B.60° C.90° D.120°9.如图,点E是矩形ABCD的对角线AC上一点,正方形EFGH的顶点G、H都在边AD上,AB=3,BC=4,则tan∠GAF的值为()A. B. C. D.10.如图,在矩形ABCD中,AB=4,BC=6,点E是AB中点,在AD上取一点G,以点G为圆心,GD的长为半径作圆,该圆与BC边相切于点F,连接DE,EF,则图中阴影部分面积为()A.3π B.4π C.2π+6 D.5π+2二.填空题(满分30分,每小题5分)11.已知x=y+95,则代数式x2﹣2xy+y2﹣25=.12.如果|a+1|+(b﹣1)2=0,则a2000+b2001=.13.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.14.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为.15.如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中点E,且与边BC交于点D,若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,则此直线的解析式为.16.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.三.解答题(共8小题,满分80分)17.(8分)计算或化简:(1)+()﹣1﹣4cos45°+(﹣π)0.(2)(x﹣2)2﹣x(x﹣3).18.(8分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.19.(8分)如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形,如图,已知整点A(2,2),B(4,1),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个等腰△PAB,使点P的横坐标大于点A的横坐标.(2)在图2中画一个直角△PAB,使点P的横坐标等于点P,B的纵坐标之和.21.(10分)如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH交⊙O于点D,交CP于点H,连结AC,CD.(1)求证:∠PBH=2∠D.(2)若sin∠P=,BH=2,求⊙O的半径及BD的长.22.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.23.(12分)某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价x(元)不低于60元,而市场要求x不得超过100元.(1)求出每天的销售量y(件)与销售单价x(元)之间的函数关系式,并写出x的取值范围;(2)求出每天的销售利润W(元)与销售单价x(元)之间的函数关系式,并求出当x为多少时,每天的销售利润最大,并求出最大值;(3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价x最低可定为多少元?24.(14分)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与BC相切于点E,与AC相交于点F.连接AE.(1)求证:AE平分∠CAD;(2)连接DF,交AE于点G,若⊙O的直径是12,AE=10,求EG的长;(3)连接CD,若∠B=30°,CE=2,求CD的长.
浙江省温州市苍南县2019届九年级第二次质量测试参考答案一.选择题1.解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.2.解:49万=4.9×105.故选:B.3.解:A、朝上点数为2的可能性为;B、朝上点数为7的可能性为0;C、朝上点数不小于2的可能性为=;D、朝上点数为3的倍数的可能性为=,故选:C.4.解:综合三视图可以得出,这个几何体的底层应该有4个,第二层第二列第二排有2个,因此这个几何体只能是A.故选:A.5.解:3x<2(x+2),3x<2x+4,3x﹣2x<4,x<4,故选:D.6.解:∵直线y1=k1x+b1与直线y2=k2x+b2交于(1,3),∴若k1x+b1≤k2x+b2,则x≤1,又∵直线y1=k1x+b1过点(﹣1,﹣3),且y随x的增大而增大,∴若﹣3≤k1x+b1,则﹣1≤x,∴若﹣3≤k1x+b1≤k2x+b2,则﹣1≤x≤1.故选:D.7.解:小明打字速度为x个/分钟,那么小明打120个字所需要的时间为:;易得小张打字速度为(x+6)个/分钟,小张打180个字所需要的时间为:;∴可列方程为:,故选:C.8.解:∵OA=1,的长是,∴,解得:n=60°,∴∠AOB=60°,故选:B.9.解:∵∠AHE=∠ABC=90°,∠HAE=∠BCA,∴△AHE∽△CBA.∴,设HE=3a,则AH=4a.∴AG=7a,GF=3a.∴tan∠GAF=.故选:A.10.解:如图,连接GF,∵四边形ABCD是矩形∴AD=BC=6,∠ADC=∠C=90°=∠A=∠B,AB=CD=4∵点E是AB中点∴AE=BE=2∵BC与圆相切∴GF⊥BC,且∠ADC=∠C=90°∴四边形GFCD是矩形,又∵GD=DF∴四边形GFCD是正方形∴GD=GF=CD=CF=4∴BF=BC﹣FC=2∵S阴影=(S四边形ABFD﹣S△AED﹣S△BEF)+(S扇形GDF﹣S△GDF)∴S阴影=()+(4π﹣)=4π故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:∵x=y+95,即x﹣y=95,∴原式=(x﹣y)2﹣25=9025﹣25=9000,故答案为:900012.解:根据题意可得:a+1=0,b﹣1=0,解得:a=﹣1,b=1,所以a2000+b2001=2,故答案为:2.13.解:将这6位同学的成绩重新排列为75、75、84、86、92、99,所以这六位同学成绩的中位数是=85,故答案为:85.14.解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.故答案为:2.15.解:∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式得,=1,解得k=2,∴反比例函数解析式为y=,∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,=2,解得x=1,∴点D的坐标为(1,2),设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或×8=5,∵点D的坐标为(1,2),若(1+OF)×2=3,则OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,则OF=4,此时点F的坐标为(4,0),与点A重合,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=﹣2x+4;当D(1,2),F(4,0)时,,解得,此时,直线解析式为y=﹣x+,综上所述,直线的解析式为y=﹣2x+4或y=﹣x+.故答案为:y=﹣2x+4或y=﹣x+.16.解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.三.解答题(共8小题,满分80分)17.解:(1)原式=2+2﹣4×+1=2+2﹣2+1=3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.18.解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为:35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.19.解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.20.解:(1)如图1中,图中的点P即为所求.(大不唯一)(2)如图2中,图中的点P即为所求.21.解:(1)如图,连结OC,∵PC切⊙O于点C,∴∠OCP=90°,又∵BH⊥CP,∴OC∥BH,∴∠COP=∠PBH,又∵∠COB=2∠D,∴∠PBH=2∠D;(2)连结AD,∵在Rt△BPH中,sin∠P==,BH=2,∴BP=3,∵在Rt△COP中,sin∠P==,设OC=x,则OP=x+3,∴=,解得:x=6,即半径为6.∴AB=12,∵AB是直径,∴∠ADB=∠BHP=90°,∵∠ABD=∠HBP,∴∠P=∠DAB,即sin∠P=sin∠DAB,∴在Rt△ABD中,BD=AB×sin∠DAB=×12=8.22.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.23.解:(1)y=250﹣5(x﹣60),即y=﹣5x+550.(60≤x≤100);(2)W=(x﹣50)(﹣5x+550),即y=﹣5x2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计事务所实习日记
- 会计人员培训心得体会
- 幼儿教育的教学随笔汇编12篇
- 关于销售类生产实习报告4篇
- 乡镇雪亮工程公共视频应用联网项目综合视频监控系统功能介绍
- 法律的作用(醉驾版)
- 2025年运载火箭控制系统仿真实时处理系统项目发展计划
- 《职场沟通》电子教案 项目六 职场面试沟通
- 商铺出租合同模板
- 杭州市房屋租赁合同
- 智能阳台种菜项目计划书
- 广东省深圳市龙岗区2023-2024学年四年级上学期期末数学试卷+
- 华为公司管理层选拔机制解析
- 第三方代付工程款协议书范本
- 烈士遗属救助申请书
- 外研版英语九年级上册 Module1-12作文范文
- 南京市七年级上册地理期末试卷(含答案)
- 足球课程教学计划工作总结
- 家具成品检验通用标准
- 粉末涂料有限公司成品装车作业安全风险分级管控清单
- 运输类工作简历
评论
0/150
提交评论