版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11几何最值问题专项训练【基础过关|直击中考】1.(山东滨州,11,3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6D.3AABOPMN2.(四川泸州,10题,3分)在平面直角坐标系内,以原点为原心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3B.2C.D.3.(四川绵阳,10,3分)一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:,)A.4.64海里B.5.49海里C.6.12海里D.6.21海里4.(四川省宜宾市,8,3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A.eq\r(\s\do1(),10)B.eq\f(19,2)C.34D.105.(天津市,11,3)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.ABB.DEC.BDD.AF6.(山东德州,12,3分)如图,等边三角形的边长为4,点是△的中心,.绕点旋转,分别交线段于两点,连接,给出下列四个结论:①;②;③四边形的面积始终等于;④△周长的最小值为6,上述结论中正确的个数是()图图1图图图1图2A.1B.2C.3D.47.(四川绵阳)不等边三角形的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。8.(四川泸州,题,3分)如图5,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.(江西)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.10.(四川攀枝花,15,4)如图5,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足,则点P到A、B两点的距离之和PA+PB的最小值为.11.(云南)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.12.(年黑龙江省大庆市)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?13.(年宁夏)如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM∽△ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.14.(广西省贵港)已知:是等腰直角三角形,,将绕点顺时针方向旋转得到△,记旋转角为,当时,作,垂足为,与交于点.(1)如图1,当时,作的平分线交于点.①写出旋转角的度数;②求证:;(2)如图2,在(1)的条件下,设是直线上的一个动点,连接,,若,求线段的最小值.(结果保留根号).15.(四川省成都市,27,10)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A´B´C´(点A、B的对应点分别为A´、B´),射线CA´、CB´分别交直线m于点P,Q.(1)如图1,当P与A´重合时,求∠ACA´的度数;(2)如图2,设A´B´与BC的交点为M,当M为A´B´的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA´,CB´的延长线上时,试探究四边形PA´B´Q的面积是否存在最小值.若存在,求出四边形PA´B´Q的最小面积;若不存在,请说明理由.1.(山东威海,24,12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止,设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.2.(山东省威海市,题号25,分值12)(1)方法选择如图①,四边形ABCD是OO的内接四边形,连接AC,BD.AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM..……小军认为可用补短法证明:延长CD至点N,使得DN=AD……请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD.BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是O0的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.3.(·益阳)如图,在半面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(·衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC延长线方向匀速运动.当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB′的值最小?并求出最小值.5.(·淮安)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=°;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.6.(·苏州,26,10)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金属压力及大型容器项目建议书
- 地铁站建设爆破施工合同模板
- 2024年销售授权协议3篇
- 住宅社区配电箱招标文件范例
- 电子商务合同管理规范
- 贵阳市短租民宿合同协议书
- 2025年道路运输业项目合作计划书
- 零售商品分期付款协议书
- 农业技术成果研究种植合作
- 2025成都市房屋买卖合同
- 污水泵站运营维护管理方案
- 2024下半年软考信息安全工程师考试真题-及答案-打印
- 项目经理或管理招聘面试题与参考回答
- 中华人民共和国能源法
- 常见急救知识培训
- 义务教育信息科技课程标准(2024年版)
- 《义务教育数学课程标准(2022年版)》初中内容解读
- 产品质量检测服务行业营销策略方案
- 佛吉亚卓越体系知识手册
- 第五单元作文 记述与动物的相处 课件七年级语文上册人教版2024
- 互联网新闻信息服务管理规定试题
评论
0/150
提交评论