2023-2024学年天津市部分区五区县八上数学期末综合测试试题含解析_第1页
2023-2024学年天津市部分区五区县八上数学期末综合测试试题含解析_第2页
2023-2024学年天津市部分区五区县八上数学期末综合测试试题含解析_第3页
2023-2024学年天津市部分区五区县八上数学期末综合测试试题含解析_第4页
2023-2024学年天津市部分区五区县八上数学期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年天津市部分区(五区县)八上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在等边中,是边上一点,连接,将绕点逆时针旋转得到,连接,若,,则有以下四个结论:①是等边三角形;②;③的周长是10;④.其中正确结论的序号是()A.②③④ B.①③④ C.①②④ D.①②③2.直线y=kx+2过点(﹣1,0),则k的值是()A.2 B.﹣2 C.﹣1 D.13.估计+1的值()A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.如图,∠AOB=10°,点P是∠AOB内的定点,且OP=1.若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.12 B.9 C.6 D.15.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作天完成总量的三分之一,这时增加了乙队,两队又共同工作了天,总量全部完成.那么乙队单独完成总量需要()A.天 B.天 C.天 D.天6.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.()A.4个 B.3个 C.2个 D.1个7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm8.下列计算结果为的是()A. B. C. D.9.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A. B. C. D.10.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=311.对于函数y=﹣2x+1,下列结论正确的是()A.y值随x值的增大而增大B.它的图象与x轴交点坐标为(0,1)C.它的图象必经过点(﹣1,3)D.它的图象经过第一、二、三象限12.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色

黄色

绿色

白色

紫色

红色

数量(件)

120

150

230

75

430

经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数 B.中位数 C.众数 D.平均数与众数二、填空题(每题4分,共24分)13.若点在第二象限,且到原点的距离是5,则________.14.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.15.化简结果是_______.16.当____________时,解分式方程会出现增根.17.已知、满足,,则的值等于_______.18.(2015秋•端州区期末)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为.三、解答题(共78分)19.(8分)某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?20.(8分)列分式方程解应用题元旦期间,甲、乙两位好友约着一起开两辆车自驾去黄山玩,其中面包车为领队,小轿车紧随其后,他们同时出发,当面包车行驶了200千米时,发现小轿车只行驶了180千米,若面包车的行驶速度比小轿车快10千米/小时,请问:(1)小轿车和面包车的速度分别多少?(2)当小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面100千米的地方碰头,他们正好同时到达,请问小轿车需要提速多少千米/小时?(3)小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面s千米的地方碰头,他们正好同时到达,请问小轿车提速千米/小时.(请你直接写出答案即可)21.(8分)如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB=DE,BE∥AC.(1)求证:△ABC≌△DEB;(1)连结AD、AE、CE,如图1.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.22.(10分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.23.(10分)化简:yxyxy1x11y1.24.(10分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=1.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)25.(12分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长半径画弧,两弧交于点P,作射线AP,交边BC于点D,若CD=4,AB=15,则△ABD的面积是__________.26.如图AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】先由△BCD绕点B逆时针旋转60°,得到△BAE,可知:BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,从而得∠BAE=∠ABC=60°,根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=1.【详解】∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,∴①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∴∠BAE=∠ABC,∴AE∥BC,∴②正确;∵△BDE是等边三角形,∴DE=BD=4,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=6+4=1,∴③正确;∵△BDE是等边三角形,∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE=180°-∠BDE-∠BDC<60°,∴∠ADE≠∠BDC,∴④错误.故选D.【点睛】本题主要考查旋转得性质,等边三角形的判定和性质定理,掌握旋转的性质以及等边三角形的性质定理,是解题的关键.2、A【分析】把(﹣1,0)代入直线y=kx+1,得﹣k+1=0,解方程即可求解.【详解】解:把(﹣1,0)代入直线y=kx+1,得:﹣k+1=0解得k=1.故选A.【点睛】本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.3、C【解析】∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选C.4、D【分析】根据题意,作点P关于OA、OB的对称点E、D,连接DE,与OA相交于点M,与OB相交于点N,则此时△PMN周长的最小值是线段DE的长度,连接OD、OE,由∠AOB=10°,得到∠DOE=60°,由垂直平分线的性质,得到OD=OE=OP=1,则△ODE是等边三角形,即可得到DE的长度.【详解】解:如图:作点P关于OA、OB的对称点E、D,连接DE,与OA相交于点M,与OB相交于点N,则此时△PMN周长的最小值是线段DE的长度,连接OD、OE,由垂直平分线的性质,得DN=PN,MP=ME,OD=OE=OP=1,∴△PMN周长的最小值是:PN+PM+MN=DN+MN+ME=DE,由垂直平分线的性质,得∠DON=∠PON,∠POM=∠EOM,∴∠DOE=∠DOP+∠EOP=2(∠PON+∠POM)=2∠MON=60°,∴△ODE是等边三角形,∴DE=OD=OE=1,∴△PMN周长的最小值是:PN+PM+MN=DE=1;故选:D.【点睛】本题考查了等边三角形的判定,垂直平分线的性质,轴对称的性质,以及最短路径问题,解题的关键是正确作出辅助线,确定点M、N的位置,使得△PMN周长的最小.5、D【分析】根据题意得出本题的等量关系为工作时间=工作总量÷工作效率,设未知数,列方程求解即可.【详解】解:设乙队单独完成总量需要x天,则解得x=1.经检验x=1是分式方程的解,故选:D.【点睛】本题考查分式方程的实际应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到等量关系是解决问题的关键.6、B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:②③④正确.故选:B.【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.7、C【分析】连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.【详解】连接、,过作于∵在中,,,∴,∴在中,∴在中,∴,∵的垂直平分线∴同理∵∴∴在中,∴同理∴故选:C.【点睛】本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.8、C【解析】根据幂的运算法则分别判断各选项是否正确即可解答.【详解】解:,故A错误;,故B错误;,故C正确;,故D错误;故选:C.【点睛】本题考查了幂的运算法则,准确计算是解题的关键.9、A【分析】根据科学记数法绝对值小于1的正数也可以利用科学记数法表示,一般形式为,其中,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】由科学记数法的表示可知,,故选:A.【点睛】科学记数法表示数时,要注意形式中,的取值范围,要求,而且的值和原数左边起第一个不为零的数字前面的0的个数一样.10、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.11、C【分析】根据一次函数的图象和性质,以及一次函数图象上点的坐标特征,一次函数解析式系数的几何意义,逐一判断选项,即可.【详解】∵k=﹣2<0,∴y值随x值的增大而减小,结论A不符合题意;∵当y=0时,﹣2x+1=0,解得:x=,∴函数y=﹣2x+1的图象与x轴交点坐标为(,0),结论B不符合题意;∵当x=﹣1时,y=﹣2x+1=3,∴函数y=﹣2x+1的图象必经过点(﹣1,3),结论C符合题意;∵k=﹣2<0,b=1>0,∴函数y=﹣2x+1的图象经过第一、二、四象限,结论D不符合题意.故选:C.【点睛】本题主要考查一次函数的图象和性质,掌握一次函数图象上点的坐标特征,一次函数解析式系数的几何意义,是解题的关键.12、C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.二、填空题(每题4分,共24分)13、-4【分析】根据点到原点的距离是5,即可列出关于a的方程,求出a值,再根据在第二象限,a<0,取符合题意的a值即可.【详解】∵点到原点的距离是5∴解得a=±4又∵在第二象限∴a<0∴a=-4故答案为:-4【点睛】本题考查了坐标到原点的距离求法,以及直角坐标系中不同象限内点的坐标特点.14、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.15、【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.16、1【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=1,故答案为1.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17、或.【分析】分两种情况:当时,由,,构造一元二次方程,则其两根为,利用根与系数的关系可得答案,当时,代入代数式即可得答案,【详解】解:时,、满足,,、是关于的方程的两根,,,则当时,原式的值等于或.故答案为:或.【点睛】本题考查的是利用一元二次方程的根与系数的关系求代数式的值,掌握分类讨论,一元二次方程的构造是解题的关键.18、22cm【解析】试题分析:根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm考点:线段垂直平分线的性质.三、解答题(共78分)19、(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.20、(1)小轿车的速度是90千米/小时,面包车的速度是100千米/小时;(2)小轿车需要提速30千米/小时;(3)【分析】(1)设小轿车的速度是x千米/小时,由题意可列出分式方程即可求解;(2)设小轿车需要提速a千米/小时,由题意可列出分式方程即可求解;(3)设小轿车需要提速b千米/小时,把(2)中100千米换成s即可求解.【详解】(1)解:设小轿车的速度是x千米/小时,由题意列方程得:解得x=90经检验x=90是原方程的解,x+10=100答:小轿车的速度是90千米/小时,面包车的速度是100千米/小时.(2)解:设小轿车需要提速a千米/小时,由题意列方程得解得:a=30经检验a=30是原方程的解答:小轿车需要提速30千米/小时.(3)设小轿车需要提速b千米/小时,由题意列方程得解得b=经检验a=是原方程的解故小轿车需要提速千米/小时故答案为:.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程求解.21、(1)详见解析;(1)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(1)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(1)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.22、(1)①③;(2)【分析】(1)根据对称式的定义进行判断;(2)由可知,再根据对称式的定义判断即可;当时,,代入求解即可.【详解】(1)①③;(2)∵∴,∴的表达式都是对称式;当时,,∴,∴.【点睛】本题考查分式的化简求值,以对称式的方式考查,有一定的难度,需要准确理解对称式的定义.23、【分析】利用单项式乘多项式及完全平方公式展开,然后再合并同类项即可.【详解】解:原式.【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.24、(1)3;(2)见解析【分析】(1)根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.(2)作∠AOB的平分线OE,作线段MN的垂直平分线GH,GH交OE于点P,点P即为所求.【详解】(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论