2023-2024学年山东省淄博市临淄区第二中学数学八上期末质量跟踪监视模拟试题含解析_第1页
2023-2024学年山东省淄博市临淄区第二中学数学八上期末质量跟踪监视模拟试题含解析_第2页
2023-2024学年山东省淄博市临淄区第二中学数学八上期末质量跟踪监视模拟试题含解析_第3页
2023-2024学年山东省淄博市临淄区第二中学数学八上期末质量跟踪监视模拟试题含解析_第4页
2023-2024学年山东省淄博市临淄区第二中学数学八上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省淄博市临淄区第二中学数学八上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法中,不正确的是()A.﹣的绝对值是﹣ B.﹣的相反数是﹣C.的立方根是2 D.﹣3的倒数是﹣2.方差:一组数据:2,,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是()A.10 B. C.2 D.3.根据下列表述,能确定具体位置的是()A.实验中学东 B.南偏西30°C.东经120° D.会议室第7排,第5座4.下列方程是二元一次方程的是()A. B. C. D.5.在实数,,,,中,无理数有()A.1个 B.2个 C.3个 D.4个6.下列各组中的三条线段(单位:),能围成三角形的是()A.1,2,3 B.2,3,4 C.10,20,35 D.4,4,97.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.计算等于()A. B. C. D.9.已知可以写成一个完全平方式,则可为()A.4 B.8 C.16 D.10.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2) B.(3,0) C.(﹣1,3) D.(0,﹣4)11.生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.12.下列各数中无理数是()A.5.3131131113 B. C. D.二、填空题(每题4分,共24分)13.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b)5展开式共有六项,系数分别为______,拓展应用:(a﹣b)4=_______.14.如图,中,,,、分别是、上两点,连接并延长,交的延长线于点,此时,,则的度数为______.15.如图,在等边中,D、E分别是边AB、AC上的点,且,则______16.一个n边形的内角和为1080°,则n=________.17.在正整数中,利用上述规律,计算_____.18.的立方根是__________.三、解答题(共78分)19.(8分)在△ABC中,∠BAC=41°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=131°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为1,记△ABC得面积为1.求证:;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)20.(8分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?请写出这个等量关系,并加以证明.21.(8分)已知:如图,在长方形中,,动点从点出发,以每秒的速度沿方向向点运动,动点从点出发,以每秒的速度沿向点运动,同时出发,当点停止运动时,点也随之停止,设点运动的时间为秒.请回答下列问题:(1)请用含的式子表达的面积,并直接写出的取值范围.(2)是否存在某个值,使得和全等?若存在,请求出所有满足条件的值;若不存在,请说明理由.22.(10分)阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程ax-a=1的解为正数,求a经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+1.由题意可得a+1>0,所以a>﹣1,问题解决.小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.(1)请回答:的说法是正确的,并简述正确的理由是;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程mx-3-x23.(10分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.24.(10分)两块等腰直角三角尺与(不全等)如图(1)放置,则有结论:①②;若把三角尺绕着点逆时针旋转一定的角度后,如图(2)所示,判断结论:①②是否都还成立?若成立请给出证明,若不成立请说明理由.25.(12分)老师在黑板上写出了一个分式的计算题,随后用手捂住了一部分,如下图所示:(1)求所捂部分表示的代数式;(2)所捂部分代数式的值能等于-1吗?为什么?26.计算(每小题4分,共16分)(1)(2)已知.求代数式的值.(1)先化简,再求值,其中.(4)解分式方程:+1.

参考答案一、选择题(每题4分,共48分)1、A【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A、﹣的绝对值不是﹣,故A选项不正确,所以本选项符合题意;B、﹣的相反数是﹣,正确,所以本选项不符合题意;C、=8,所以的立方根是2,正确,所以本选项不符合题意;D、﹣3的倒数是﹣,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.2、B【分析】先根据中位数是3,得到数据从小到大排列时与3相邻,再根据中位数的定义列方程求解即得的值,最后应用方差计算公式即得.【详解】∵这组数据的中位数是3∴这组数据按照从小到大的排列顺序应是1,2,,3,4,5或1,2,3,,4,5∴解得:∴这组数据是1,2,3,3,4,5∴这组数据的平均数为∵∴故选:B.【点睛】本题考查了中位数的定义和方差的计算公式,根据中位数定义应用方程思想确定的值是解题关键,理解“方差反映一组数据与平均值的离散程度”有助于熟练掌握方差计算公式.3、D【分析】根据确定位置的方法,逐一判断选项,即可.【详解】A.实验中学东,位置不明确,不能确定具体位置,不符合题意,B.南偏西30°,只有方向,没有距离,不能确定具体位置,不符合题意,C.东经120°,只有经度,没有纬度,不能确定具体位置,不符合题意,D.会议室第7排,第5座,能确定具体位置,符合题意.故选:D.【点睛】本题主要考查确定位置的方法,掌握确定位置的方法,是解题的关键.4、C【分析】根据二元一次方程的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元二次方程,故本选项错误;B、是一元一次方程,故本选项错误;C、是二元一次方程,故本选项正确;D、不是整式方程,故本选项错误.故选C.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.5、B【详解】解:在实数,,,,中,其中,,是无理数.故选:B.6、B【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【详解】A选项:1+2=3,所以不能构成三角形;B选项:2+3>4,所以能构成三角形;C选项:10+20<35,所以不能构成三角形;D选项:4+4<9,所以不能构成三角形;故选:B.【点睛】考查了三角形的三边关系.解题关键利用了三角形的三边关系:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.7、A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.8、A【分析】直接利用二次根式的乘除运算法则化简求出即可.【详解】===故选A.【点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.9、C【解析】∵可以写成一个完全平方式,∴x2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故选C.10、B【分析】根据x轴上点的特点解答即可.【详解】在平面直角坐标系中x轴上点的特点是:所有点的纵坐标都为0,故选B.【点睛】本题是一道基础题,考查平面直角坐标系的特点,解题的关键是掌握平面直角坐标系的基本特征即可.11、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、C【分析】根据无理数的定义对各选项进行逐一分析即可.【详解】解:A、5.3131131113是有限小数,属于有理数;B、是分数,属于有理数;C、,是无理数;D、=-3,是整数,属于有理数.故选C.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题(每题4分,共24分)13、1,5,10,10,5,1a4﹣4a3b+6a2b2﹣4ab3+b4【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【详解】(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.【点睛】此题考查完全平方公式,正确观察已知的式子与对应的三角形之间的关系是关键.14、145°【分析】根据三角形外角性质求出,,代入求出即可.【详解】解:,,,,,故答案为:.【点睛】本题考查了三角形的外角性质,能熟记三角形外角性质的内容是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.15、1【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°,进而利用四边形内角和解答即可.【详解】解:是等边三角形,≌.,,,故答案为1.【点睛】此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.16、1【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.17、【分析】先依据题例用平方差公式展开,再利用乘法分配律交换位置后,相乘进行约分计算即可.【详解】解:=====,故答案为:.【点睛】本题考查运用因式分解对有理数进行简便运算.熟练掌握平方差公式是解题关键.18、-1【解析】根据立方根的定义进行求解即可得.【详解】∵(﹣1)3=﹣8,∴﹣8的立方根是﹣1,故答案为﹣1.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=131°-∠ACM;

(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;

(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=41°,∴∠AMC=180°﹣41°﹣∠ACM=131°﹣∠ACM.∵∠NCM=131°,∴∠ACN=131°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC•NE,S2AB•CD,∴;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.20、(1)见解析;(2)见解析;(3)DE=BE-AD,证明见解析【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;

(2)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,从而有DE=CE-CD=AD-BE;

(3)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,于是有DE=CD-CE=BE-AD.【详解】(1)证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵∴△ACD≌△CBE(AAS)∴CE=AD,CD=BE∵DE=CE+CD∴DE=AD+BE(2)证明:与(1)一样可证明△ADC≌△CEB,

∴CD=BE,AD=CE,

∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证明如下:证明:证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵∴△ACD≌△CBE(AAS)∴CE=AD,CD=BE∴DE=CD-CE=BE-AD;【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.21、(1)(0<t≤1.5),(1.5<t≤4),(4<t<5);(2)当t=3时,△ABP和△CDQ全等.【分析】(1)分别讨论①当Q在CD上时,②当Q在DA上时,③当Q在AB上时,表示出CQ,BP求出面积即可;(2)分别讨论①当Q在CD上时,②当Q在AD上时,③当Q在AB上时,求出△ABP和△CDQ全等时的t值.【详解】解:(1)①当Q在CD上时,如图,由题意得CQ=2t,BP=t∴CP=5t(0<t≤1.5)②当Q在DA上时,(1.5<t≤4)③当Q在AB上时,由题意得BQ=112t(4<t<5)(2)①当Q在CD上时,不存在t使△ABP和△CDQ全等②当Q在AD上时,如图,由题意得DQ=2t3要使△ABP≌△CDQ,则需BP=DQ∵DQ=2t3,BP=t∴t=2t3,t=3即当t=3时,△ABP≌△CDQ.③当Q在AB上时,不存在t使△ABP和△CDQ全等综上所述,当t=3时,△ABP和△CDQ全等.【点睛】本题是对矩形动点问题的考查,熟练掌握矩形的性质是解决本题的关键,难度较大.22、(1)小哲;分式的分母不为0;(2)m≥﹣6且m≠﹣2.【解析】(1)根据分式方程解为正数,且分母不为0判断即可;

(2)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m的范围即可.【详解】解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;故答案为:小哲;分式的分母不为0;(2)去分母得:m+x=2x﹣6,解得:x=m+6,由分式方程的解为非负数,得到m+6≥0,且m+6≠2,解得:m≥﹣6且m≠﹣2.【点睛】本题考查的知识点是解一元一次不等式及解分式方程,解题的关键是熟练的掌握解一元一次不等式及解分式方程.23、(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.24、①AC=BD②AC⊥BD都还成立,理由见解析【分析】利用全等三角形的判定方法(SAS)得出△AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论