版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省南京秦淮区南航附中数学八上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,点C在AD上,CA=CB,∠A=20°,则∠BCD=()A.20° B.40° C.50° D.140°2.已知三角形三边长3,4,,则的取值范围是()A. B. C. D.3.如果一个正多边形的内角和是外角和的3倍,那么这个正多边形的边数为()A.5 B.6 C.7 D.84.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3 B.4 C.5 D.65.下列说法正确的是()A.(-2)2的平方根是-2 B.-3是-9的负的平方根C.的立方根是2 D.(-1)2的立方根是-16.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有()A.1个 B.2个 C.3个 D.4个7.估计5﹣的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间8.若等腰三角形的顶角为,则它的底角度数为()A. B.或 C.或 D.9.下列四个汽车标志图中,不是轴对称图形的是()A. B.C. D.10.如图,中,平分,平分,经过点,且,若,的周长等于12,则的长为()A.7 B.6 C.5 D.411.下列计算正确的是()A.3x﹣2x=1 B.a﹣(b﹣c+d)=a+b+c﹣dC.(﹣a2)2=﹣a4 D.﹣x•x2•x4=﹣x712.如果,那么的值为().A.9 B. C. D.5二、填空题(每题4分,共24分)13.如图,已知中,,,,点D为AB的中点,如果点P在线段BC上以2厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若当与全等时,则点Q运动速度可能为____厘米秒.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.15.如图,在一个长为8cm,宽为5cm的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为2cm的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是_____.16.如图,在中,,点在内,平分,连结,把沿折叠,落在处,交于,恰有.若,,则__________.17.如图,在的同侧,,点为的中点,若,则的最大值是_____.18.如图,已知中,,,垂足为点D,CE是AB边上的中线,若,则的度数为____________.三、解答题(共78分)19.(8分)某商店销售篮球和足球共60个.篮球和足球的进价分别为每个40元和50元,篮球和足球的卖价分别为每个50元和65元.设商店共有x个足球,商店卖完这批球(篮球和足球)的利润为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)商店现将篮球每个涨价a元销售,足球售价不变,发现这批球卖完后的利润和x的取值无关.求卖完这批球的利润和a的值.20.(8分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当时,求与之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?21.(8分)如图,在△ABC中,∠ACB=90°,∠ABC和∠CAB的平分线交于点O,求∠AOB的度数.22.(10分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.23.(10分)如图,正比例函数的图象和一次函数的图象交于点,点B为一次函数的图象与x轴负半轴交点,且的面积为1.求这两个函数的解析式.根据图象,写出当时,自变量x的取值范围.24.(10分)全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了,两种型号的空气净化器,已知一台型空气净化器的进价比一台型空气净化器的进价多300元,用7500元购进型空气净化器和用6000元购进型空气净化器的台数相同.(1)求一台型空气净化器和一台型空气净化器的进价各为多少元?(2)在销售过程中,型空气净化器因为净化能力强,噪声小而更受消费者的欢迎.商社电器计划型净化器的进货量不少于20台且是型净化器进货量的三倍,在总进货款不超过5万元的前提下,试问有多少种进货方案?25.(12分)物华小区停车场去年收费标准如下:中型汽车的停车费为600元/辆,小型汽车的停车费为400元/辆,停满车辆时能收停车费23000元,今年收费标准上调为:中型汽车的停车费为1000元/辆,小型汽车的停车费为600元/辆,若该小区停车场容纳的车辆数没有变化,今年比去年多收取停车费13000元.(1)该停车场去年能停中、小型汽车各多少辆?(2)今年该小区因建筑需要缩小了停车场的面积,停车总数减少了11辆,设该停车场今年能停中型汽车辆,小型汽车有辆,停车场收取的总停车费为元,请求出关于的函数表达式;(3)在(2)的条件下,若今年该停车场停满车辆时小型汽车的数量不超过中型汽车的2倍,则今年该停车场最少能收取的停车费共多少元?26.某超市用3000元购进某种干果销售,由于销售状况良好,很快售完.超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果的数量是第一次的2倍还多300千克,如果超市此时按每千克9元的价格出售,当大部分干果售出后,余下的100千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市第二次销售该种干果盈利了多少元?
参考答案一、选择题(每题4分,共48分)1、B【详解】解:∵CA=CB,∠A=20°,∴∠A=∠B=20°,∴∠BCD=∠A+∠B=20°+20°=40°.故选B.2、C【分析】根据三角形三边的关系即可得出结论【详解】解:∵三角形的三边长分别是x,3,4,
∴x的取值范围是1<x<1.
故选:C【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.3、D【分析】设正多边形的边数为n,利用多边形的内角和公式和外角和定理即可解答.【详解】设正多边形的边数为n,由题意得:(n-2)·180º=3×360º,解得:n=8,故选:D.【点睛】本题考查多边形的内角(和)与外角(和),熟记多边形的内角和公式及外角和为360º是解答的关键.4、A【解析】角平分线上的点到角的两边的距离相等,故点P到AB的距离是3,故选A5、C【分析】根据平方根的定义和立方根的定义逐一判断即可.【详解】A.(-2)2=4的平方根是±2,故本选项错误;B.-3是9的负的平方根,故本选项错误;C.=8的立方根是2,故本选项正确;D.(-1)2=1的立方根是1,故本选项错误.故选C.【点睛】此题考查的是平方根和立方根的判断,掌握平方根的定义和立方根的定义是解决此题的关键.6、C【解析】①一个正数有两个平方根,它们互为相反数,和为0,故①正确;②立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,故②正确;③无限不循环小数是无理数,无限循环小数是有理数,故③错误;④实数和数轴上的点一一对应,故④正确,所以正确的有3个,故选C.7、C【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8、A【解析】根据等腰三角形两底角相等和三角形内角和定理即可求得底角的度数等于(180°-顶角的度数)÷1.【详解】解:该三角形底角的度数为:.故选:A.【点睛】本题考查三角形内角和定理和等腰三角形的性质.理解三角形内角和等于180°和等腰三角形的两个底角相等是解决此题的关键.9、B【解析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.对各图形分析后即可得解A、是轴对称图形,故不符合题意;B、不是轴对称图形,故符合题意;C、是轴对称图形,故不符合题意;D、是轴对称图形,故不符合题意10、A【分析】根据角平分线及得到BM=OM,CN=ON,得到三角形AMN的周长=AB+AC,再利用AB=5即可求出AC的长.【详解】∵平分,∴∠MBO=∠OBC,∵,∴∠OBC=∠MOB,∴∠MBO=∠MOB,∴BM=OM,同理CN=ON,∴的周长=AM+AN+MN=AM+AN+OM+ON=AB+AC=12,∵AB=5,∴AC=7,故选:A.【点睛】此题考查平行线的性质:两直线平行内错角相等,角平分线的定义,三角形周长的推导是解题的关键.11、D【分析】直接利用积的乘方运算法则以及去括号法则分别化简得出答案.【详解】解:A、3x﹣2x=x,故此选项错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故此选项错误;C、(﹣a2)2=a4,故此选项错误;D、﹣x•x2•x4=﹣x7,故此选项正确.故选:D.【点睛】本题考查了积的乘方运算法则以及去括号法则,正确掌握相关运算法则是解题关键.12、C【分析】对分解因式的结果利用多项式乘以多项式法则计算,再利用多项式相等的条件即可求出m的值.【详解】∵,
∴.
故选:C.【点睛】本题考查了因式分解的意义,熟练掌握多项式乘以多项式法则是解本题的关键.二、填空题(每题4分,共24分)13、2或【分析】,表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【详解】,,点D为AB的中点,,设点P、Q的运动时间为t,则,当时,,解得:,则,故点Q的运动速度为:厘米秒;当时,,,秒.故点Q的运动速度为厘米秒.故答案为2或厘米秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.14、(4,2)【解析】试题考查知识点:图形绕固定点旋转思路分析:利用网格做直角三角形AMB,让△AMB逆时针旋转90°,也就使AB逆时针旋转了90°,由轻易得知,图中的AB′就是旋转后的位置.点B′刚好在网格格点上,坐标值也就非常明显了.具体解答过程:如图所示.做AM∥x轴、BM∥y轴,且AM与BM交于M点,则△AMB为直角三角形,线段AB绕点A按逆时针方向旋转90°,可以视为将△AMB逆时针方向旋转90°()得到△ANB′后的结果.∴,AN⊥x轴,NB′⊥y轴,点B′刚好落在网格格点处∵线段AB上B点坐标为(1,3)∴点B′的横坐标值为:1+3=4;纵坐标值为:3-1=2即点B′的坐标为(4,2)试题点评:在图形旋转涉及到的计算中,还是离不开我们所熟悉的三角形.15、13cm.【分析】解答此题要将木块展开,然后根据两点之间线段最短解答.【详解】由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为8+2×2=12cm;宽为5cm.于是最短路径为:=13cm.故答案为13cm.【点睛】本题考查了四边形中点到点的距离问题,掌握勾股定理是解题的关键.16、【解析】如图(见解析),延长AD,交BC于点G,先根据等腰三角形的三线合一性得出,再根据折叠的性质、等腰三角形的性质(等边对等角)得出,从而得出是等腰直角三角形,然后根据勾股定理、面积公式可求出AC、CE、CF的长,最后根据线段的和差即可得.【详解】如图,延长AD,交BC于点G平分,,且AG是BC边上的中线由折叠的性质得,即,即是等腰直角三角形,且在中,由三角形的面积公式得即,解得故答案为:.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.17、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题18、【分析】本题可利用直角三角形斜边中线等于斜边的一半求证边等,并结合直角互余性质求解对应角度解题即可.【详解】∵∠ACB=,CE是AB边上的中线,∴EA=EC=EB,又∵∠B=,∴∠ACE=∠A=,∵,∴∠DCB=.故.故填:.【点睛】本题考查直角三角形性质,考查“斜中半”定理,角度关系则主要通过直角互余性质求解即可.三、解答题(共78分)19、(1)y=5x+600(0≤x≤60);(2)a=5,900元【分析】(1)设商店共有x个足球,则篮球的个数为(60-x),根据利润=售价-进价,列出等量关系即可;
(2)将(1)中的(50-40)换成(50+a-40)进行整理,分析即可.【详解】解:(1)设商店共有x个足球,依题意得:y=(65-50)x+(50-40)(60-x)即:y=5x+600(0≤x≤60);(2)根据题意,有y=(65-50)x+(50+a-40)(60-x)=(5-a)x+60(10+a)∵y的值与x无关,∴a=5,∴y=60×(10+5)=900,∴卖完这批球的利润为900元.【点睛】本题考查一次函数的应用,熟练掌握利润与售价、进价之间的关系是关键.20、(1);(2);(3)甲加工或时,甲与乙加工的零件个数相等.【解析】(1)观察图象可得零件总个数,观察AB段可得甲机器的速度,观察BC段结合甲的速度可求得乙的速度;(2)设当时,与之间的函数解析式为,利用待定系数法求解即可;(3)分乙机器出现故障前与修好故障后两种情况分别进行讨论求解即可.【详解】(1)观察图象可知一共加工零件270个,甲机器每小时加工零件:(90-50)÷(3-1)=20个,乙机器排除故障后每小时加工零件:(270-90)÷(6-3)-20=40个,故答案为:270,20,40;设当时,与之间的函数解析式为把,,代入解析式,得解得设甲加工小时时,甲与乙加工的零件个数相等,乙机器出现故障时已加工零件50-20=30个,,;乙机器修好后,根据题意则有,,答:甲加工或时,甲与乙加工的零件个数相等.【点睛】本题考查了一次函数的应用,弄清题意,读懂函数图象,理清各量间的关系是解题的关键.21、135°【解析】根据三角形的内角和定理求出∠ABC+∠BAC,再根据角平分线的定义求出∠OAB+∠OBA,然后利用三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°.∵∠CAB与∠CBA的平分线相交于O点,∴∠OAB+∠OBA=12(∠ABC+∠BAC)=12×90°=在△AOB中,∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣45°=135°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.22、(1)∠D是直角.理由见解析;(2)2.【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;
(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=1.又∵CD=7,AD=24,∴CD2+AD2=1,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=AD•DC+AB•BC=×24×7+×20×15=2.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.23、(1),;(2).【解析】根据题意,可以求得点B的坐标,从而可以得到这两个函数的解析式;根据题意和函数图象可以直接写出当时,自变量x的取值范围.【详解】解:设正比例函数,
正比例函数的图象过点,
,得,
即正比例函数,
设一次函数,
一次函数的图象过点,点B为一次函数的图象与x轴负半轴交点,且的面积为1,
,得,
点B的坐标为,
,得,
即一次函数;
由图象可得,
当时,自变量x的取值范围是.【点睛】考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24、(1)每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)有两种方案:购B型空气净化器为7台,A型净化器为21台;购B型空气净化器为8台,A型净化器为24台.【分析】(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,,解方程可得;(2)设购B型空气净化器为x台,A型净化器为3x台,由题意得,且,解不等式可得.【详解】(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设购B型空气净化器为x台,A型净化器为3x台,由题意得解得x≤由因为,即所以x的正整数值是:7,8.所以3x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国定制酒行业营销创新模式及未来5发展趋势报告
- 2024年物流驾驶员服务外包合同
- 眉山职业技术学院《灾害卫生学》2023-2024学年第一学期期末试卷
- 2024年度拍卖艺术品线上线下销售合作协议范本3篇
- 马鞍山职业技术学院《企业经营实战》2023-2024学年第一学期期末试卷
- 马鞍山学院《机器学习及应用》2023-2024学年第一学期期末试卷
- 2024年模具设计与生产合同
- 洛阳职业技术学院《公共卫生理论和实践》2023-2024学年第一学期期末试卷
- 2025年连云港货运上岗证模拟考试0题
- 2024年古建筑修复施工劳务分包合同范本及细则2篇
- 期末综合卷(含答案) 2024-2025学年苏教版数学六年级上册
- 2025春夏运动户外行业趋势白皮书
- 中医筋伤的治疗
- 【MOOC】英文技术写作-东南大学 中国大学慕课MOOC答案
- 2024年21起典型火灾案例及消防安全知识专题培训(消防月)
- 人教版四年级上册数学【选择题】专项练习100题附答案
- 从创意到创业智慧树知到期末考试答案章节答案2024年湖南师范大学
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国开《Windows网络操作系统管理》形考任务4-配置故障转移群集服务实训
- 计价格[1999]1283号_建设项目前期工作咨询收费暂行规定
- 毕业设计(论文)RLC测量仪设计
评论
0/150
提交评论