江西省横峰中学等五校2024届高一数学第一学期期末学业水平测试试题含解析_第1页
江西省横峰中学等五校2024届高一数学第一学期期末学业水平测试试题含解析_第2页
江西省横峰中学等五校2024届高一数学第一学期期末学业水平测试试题含解析_第3页
江西省横峰中学等五校2024届高一数学第一学期期末学业水平测试试题含解析_第4页
江西省横峰中学等五校2024届高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省横峰中学等五校2024届高一数学第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边在射线上,则的值为()A. B.C. D.2.若圆上至少有三个不同的点到直线的距离为,则的取值范围是()A. B.C. D.3.对,不等式恒成立,则a的取值范围是()A. B.C.或 D.或4.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④5.给定函数:①;②;③;④,其中在区间上单调递减函数序号是()A.①② B.②③C.③④ D.①④6.设,则()A.3 B.2C.1 D.-17.如图,在中,点是线段及、的延长线所围成的阴影区域内(含边界)的任意一点,且,则在直角坐标平面上,实数对所表示的区域在直线的右下侧部分的面积是()A. B.C. D.不能求8.已知函数,则下列结论错误的是()A.的一个周期为 B.的图象关于直线对称C.的一个零点为 D.在区间上单调递减9.函数的部分图象如图所示,则的值为()A. B.C. D.10.已知,,,则a、b、c大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则此函数的解析式为______12.函数的零点个数是________.13.已知函数(1)当时,求的值域;(2)若,且,求的值;14.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.15.幂函数的图像经过点,则的值为____16.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,为单位圆上一点,射线OA绕点O按逆时针方向旋转后交单位圆于点B,点B的纵坐标y关于的函数为.(1)求函数的解析式,并求;(2)若,求的值.18.设是定义在上的偶函数,的图象与的图象关于直线对称,且当时,()求的解析式()若在上为增函数,求的取值范围()是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由19.已知向量=(3,4),=(-1,2)(1)求向量与夹角的余弦值;(2)若向量-与+2平行,求λ的值20.已知直线,无论为何实数,直线恒过一定点.(1)求点的坐标;(2)若直线过点,且与轴正半轴、轴正半轴围成的三角形面积为4,求直线的方程.21.已知,,,请在①②,③中任选一个条件,补充在横线上(1)求的值;(2)求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】求三角函数值不妨作图说明,直截了当.【详解】依题意,作图如下:假设直线的倾斜角为,则角的终边为射线OA,在第四象限,,,,用同角关系:,得;∴;故选:A.2、D【解析】先整理圆的方程为可得圆心和半径,再转化问题为圆心到直线的距离小于等于,进而求解即可【详解】由题,圆标准方程为,所以圆心为,半径,因为圆上至少有三个不同点到直线的距离为,所以,所以圆心到直线的距离小于等于,即,解得,故选:D【点睛】本题考查直线与圆的位置关系的应用,考查圆的一般方程到圆的标准方程的转化,考查数形结合思想3、A【解析】对讨论,结合二次函数的图象与性质,解不等式即可得到的取值范围.【详解】不等式对一切恒成立,当,即时,恒成立,满足题意;当时,要使不等式恒成立,需,即有,解得.综上可得,的取值范围为.故选:A.4、D【解析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D5、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.6、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B7、A【解析】由点是由线段及、的延长线所围成的阴影区域内(含边界)的任意一点,作的平行线,把中、所满足的不等式表示出来,然后作出不等式组所表示的可行域,并计算出可行域在直线的右下侧部分的面积即可.【详解】如下图,过作,交的延长线于,交的延长线于,设,,,,则,所以,得,所以.作出不等式组对应的可行域,如下图中阴影部分所示,故所求面积为,故选:A.【点睛】本题考查二元一次不等式组与平面区域的关系,考查转化思想,是难题.解决本题的关键是建立、的不等式组,将问题转化为线性规划问题求解.8、B【解析】根据周期求出f(x)最小正周期即可判断A;判断是否等于1或-1即可判断是否是其对称轴,由此判断B;判断否为0即可判断C;,根据复合函数单调性即可判断f(x)单调性,由此判断D.【详解】函数,最小正周期为故A正确;,故直线不是f(x)的对称轴,故B错误;,则,∴C正确;,∴f(x)在上单调递减,故D正确.故选:B.9、C【解析】由函数的部分图象得到函数的最小正周期,求出,代入求出值,则函数的解析式可求,取可得的值.【详解】由图象可得函数的最小正周期为,则.又,则,则,,则,,,则,,则,.故选:C.【点睛】方法点睛:根据三角函数的部分图象求函数解析式的方法:(1)求、,;(2)求出函数的最小正周期,进而得出;(3)取特殊点代入函数可求得的值.10、C【解析】根据对数函数以及指数函数单调性比较大小即可.【详解】则故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】设出幂函数,代入点即可求解.【详解】由题意,设,代入点得,解得,则.故答案为:.12、3【解析】令f(x)=0求解即可.【详解】,方程有三个解,故f(x)有三个零点.故答案为:3.13、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则14、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12015、2【解析】因为幂函数,因此可知f()=216、【解析】先求得,然后利用列举法求得正确答案.【详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由三角函数的定义得到,进而代入计算;(2)由已知得,将所求利用诱导公式转化即得.【详解】解:(1)因为,所以,由三角函数定义,得.所以.(2)因为,所以,所以.【点睛】本题考查三角函数的定义,三角函数性质,诱导公式.考查运算求解能力,推理论证能力.考查转化与化归,数形结合等数学思想.已知求时要将已知中角作为整体不分离,观察所求中的角与已知中的角的关系,利用诱导公式直接转化是化简求值的常见类型.18、(1);(2);(3)见解析.【解析】分析:()当时,,;当时,,从而可得结果;()由题设知,对恒成立,即对恒成立,于是,,从而;()因为为偶函数,故只需研究函数在的最大值,利用导数研究函数的单调性,讨论两种情况,即可筛选出符合题意的正整数.详解:()当时,,;当时,,∴,()由题设知,对恒成立,即对恒成立,于是,,从而()因为为偶函数,故只需研究函数在的最大值令,计算得出()若,即,,故此时不存在符合题意的()若,即,则在上为增函数,于是令,故综上,存在满足题设点睛:本题主要考查利用导数研究函数的单调性、函数奇偶性的应用及利用单调性求参数的范围,属于中档题.利用单调性求参数的范围的常见方法:①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;②利用导数转化为不等式或恒成立问题求参数范围.19、(1);(2)-2.【解析】(1)利用平面向量的数量积公式求出夹角的余弦值;(2)根据向量平行的坐标关系得到λ的方程,求值【详解】向量=(3,4),=(-1,2)(1)向量与夹角的余弦值;(2)向量-=(3+λ,4-2λ)与+2=(1,8)平行,则8(3+λ)=4-2λ,解得λ=-2【点睛】本题考查了平面向量数量积公式的运用以及向量平行的坐标关系,属于基础题20、(1)(2)【解析】(1)将直线变形为,令,即可解出定点坐标;(2)可设直线为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论