版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏扬州中学2023-2024学年数学高一上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.函数对于定义域内任意,下述四个结论中,①②③④其中正确的个数是()A.4 B.3C.2 D.12.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.3.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.4.要得到函数的图象,只需将函数的图象()A.向左平移 B.向右平移C.向右平移 D.向左平移5.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.6.函数的一条对称轴是()A. B.C. D.7.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-228.已知直线的方程为,则该直线的倾斜角为A. B.C. D.9.下列函数中,为偶函数的是()A. B.C. D.10.设,且,则()A. B.C. D.11.已知函数的上单调递减,则的取值范围是()A. B.C. D.12.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈二、填空题(本大题共4小题,共20分)13.若xlog23=1,则9x+3﹣x=_____14.已知函数的图象恒过定点A,若点A在一次函数的图象上,其中,则的最小值为_____________.15.若函数在区间上没有最值,则的取值范围是______.16.函数在上是x的减函数,则实数a的取值范围是______三、解答题(本大题共6小题,共70分)17.已知定义在上的奇函数(1)求的值;(2)用单调性的定义证明在上是增函数;(3)若,求的取值范围.18.已知平行四边形的三个顶点的坐标为.(Ⅰ)在中,求边中线所在直线方程(Ⅱ)求的面积.19.2019年是中华人民共和国成立70周年,70年披荆斩棘,70年砥砺奋进,70年风雨兼程,70年沧桑巨变,勤劳勇敢的中国人用自己的双手创造了一项项辉煌的成绩,取得了举世瞩目的成就,为此,某市举行了“辉煌70年”摄影展和征文比赛,计划将两类获奖作品分别制作成纪念画册和纪念书刊,某公司接到制作300本画册和900本书刊的订单,已知该公司有50位工人,每位工人在1小时内可以制作完3本画册或5本书刊,现将全部工人分为两组,一组制作画册,另一组制作书刊,并同时开始工作,设制作画册的工人有x位,制作完画册所需时间为(小时),制作完书刊所需时间为(小时).(1)试比较与的大小,并写出完成订单所需时间(小时)的表达式;(2)如何分组才能使完成订单所需的时间最短?20.已知集合,(1)当,求;(2)若,求的取值范围.21.设集合.(1)当时,求实数的取值范围;(2)当时,求实数的取值范围.22.已知直线l的方程为.(1)求过点A(3,2),且与直线l垂直的直线l1方程;(2)求与直线l平行,且到点P(3,0)的距离为的直线l2的方程.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用指数的运算性质及指数函数的单调性依次判读4个序号即可.【详解】,①正确;,,②错误;,由,且得,故,③正确;由为减函数,可得,④正确.故选:B.2、D【解析】根据直线的斜率与倾斜角的关系即可求解.【详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.3、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.4、B【解析】根据左右平移的平移特征(左加右减)即可得解.【详解】解:要得到函数的图象,只需将函数的图象向右平移个单位即可.故选:B.5、B【解析】根据初相定义直接可得.【详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B6、B【解析】由余弦函数的对称轴为,应用整体代入法求得对称轴为,即可判断各项的对称轴方程是否正确.【详解】由余弦函数性质,有,即,∴当时,有.故选:B7、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.8、B【解析】直线的斜率,其倾斜角为.考点:直线的倾斜角.9、D【解析】利用函数的奇偶性的定义逐一判断即可.【详解】A,因为函数定义域为:,且,所以为奇函数,故错误;B,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;C,,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;D,因为函数定义域为:R,,所以函数为偶函数,故正确;故选:D.10、D【解析】根据同角三角函数的基本关系,两角和的正弦公式,即可得到答案;详解】,,,,故选:D11、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题12、B【解析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积【详解】由题,刍童的体积为立方丈【点睛】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键二、填空题(本大题共4小题,共20分)13、【解析】由已知条件可得x=log32,即3x=2,再结合分数指数幂的运算即可得解.【详解】解:∵,∴x=log32,则3x=2,∴9x=4,,∴,故答案为:【点睛】本题考查了指数与对数形式的互化,重点考查了分数指数幂的运算,属基础题.14、4【解析】由题意可知定点A(1,1),所以m+n=1,因为,所以,当时,的最小值为4.15、【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.16、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.三、解答题(本大题共6小题,共70分)17、(1)(2)证明见解析(3)【解析】(1)由是定义在上的奇函数知,由此即可求出结果;(2)根据函数单调递增的定义证明即可;(3)根据函数的奇偶性和单调性,可得,解不等式,即可得到结果.【小问1详解】解:由是定义在上的奇函数知,,经检验知当时,是奇函数,符合题意.故.【小问2详解】解:设,且,则,故在上是增函数.【小问3详解】解:由(2)知奇函数在上是增函数,故或,所以满足的实数的取值范围是.18、(I);(II)8.【解析】(I)由中点坐标公式得边的中点,由斜率公式得直线斜率,进而可得点斜式方程,化为一般式即可;(II)由两点间距离公式可得可得的值,由两点式可得直线的方程为,由点到直线距离公式可得点到直线的距离,由三角形的面积公式可得结果.试题解析:(I)设边中点为,则点坐标为∴直线.∴直线方程为:即:∴边中线所在直线的方程为:(II)由得直线的方程为:到直线的距离.19、(1)当时,;当时,;;(2)安排18位工人制作画册,32位工人制作书刊,完成订单所需时间最短.【解析】(1)由题意得,,利用作差法可比较出与的大小,然后可得的表达式;(2)利用反比例函数的知识求出的最小值即可.【详解】(1)由题意得,,所以,.所以当时,;当时,,所以完成订单所需时间.(2)当时,为减函数,此时;当时,为增函数,此时.因为,所以当时,取得最小值.所以安排18位工人制作画册,32位工人制作书刊,完成订单所需时间最短.20、(1)(2)【解析】(1)首先求出集合,然后根据集合的交集运算可得答案;(2)分、两种情况讨论求解即可.【小问1详解】因为,所以因为,所以【小问2详解】当,即,时,符合题意当时可得或,解得或综上,的取值范围为21、(1)(2)【解析】(1)化简集合A,B,由,得,转化为不等式关系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饭店租赁合同范本
- 二零二四年度带多应用块石购销合同(石油钻采专用)
- 个人协议书范本
- 二零二四年度影视制作委托合同标的为定制广告宣传片
- 地下车位互换协议书范本(2篇)
- 因公司原因离职协议书范本(2篇)
- 双百行动协议书模板(2篇)
- 乡镇土地项目施工方案
- 二零二四年度企业间贸易与合作合同
- 砌体抹灰工程承包合同文本
- 部编版(统编)小学语文三年级上册期末试卷(含答题卡)
- 新教科版三年级上册科学 1.2《水沸腾了》 教案
- 潮州市乡镇信息技术教育的现状和对策
- 一体化净水设备安装、调试、运行操维护说明
- 推荐精选中国多发性肌炎专家共识
- (完整版)初中尺规作图典型例题归纳总结
- 行政执法程序流程图
- 士林SC系列变频器使用说明书
- 菜籽油生产加工建设项目可行性研究报告
- 教职工健康体检结果汇总分析报告
- 汽车行业常用术语
评论
0/150
提交评论