版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省邳州市炮车中学2023-2024学年高一上数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知直线及三个互不重合的平面,,,下列结论错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则2.已知角α的终边经过点,则等于()A. B.C. D.3.下列命题不正确的是()A.若,则的最大值为1 B.若,则的最小值为4C.若,则的最小值为1 D.若,则4.命题“,是4的倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4的倍数 D.,不是4的倍数5.如图,在中,为线段上的一点,且,则A. B.C. D.6.计算A.-2 B.-1C.0 D.17.如图中,分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线是异面直线的图形有()A.①③ B.②③C.②④ D.②③④8.设全集,集合,则()A.{3,5} B.{2,4}C.{1,2,3,4,5} D.{2,3,4,5,6}9.函数有()A.最大值 B.最小值C.最大值2 D.最小值210.已知集合,则=A. B.C. D.11.角的终边经过点,则的值为()A. B.C. D.12.若,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知一容器中有两种菌,且在任何时刻两种菌的个数乘积为定值,为了简单起见,科学家用来记录菌个数的资料,其中为菌的个数,现有以下几种说法:①;②若今天值比昨天的值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时(注:)则正确的说法为________.(写出所有正确说法的序号)14.函数的值域为_____________15.函数的单调减区间为__________16.在中,,,且在上,则线段的长为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(1)用定义证明函数在区间上单调递增;(2)对任意都有成立,求实数的取值范围18.已知函数的最小正周期为,函数的最大值是,最小值是.(1)求、、的值;(2)指出的单调递增区间.19.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排20.回答下列各题(1)求值:(2)解关于的不等式:(其中)21.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.22.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】对A,可根据面面平行的性质判断;对B,平面与不一定垂直,可能相交或平行;对C,可根据面面平行的性质判断;对D,可通过在平面,中作直线,推理判断.【详解】解:对于选项A:根据面面平行的性质可知,若,,则成立,故选项A正确,对于选项B:垂直于同一平面的两个平面,不一定垂直,可能相交或平行,故选项B错误,对于选项C:根据面面平行的性质可知,若,,则成立,故选项C正确,对于选项D:若,,,设,,在平面中作一条直线,则,在平面中作一条直线,则,,,又,,,故选项D正确,故选:B.2、D【解析】由任意角三角函数的定义可得结果.【详解】依题意得.故选:D.3、D【解析】选项A、B、C通过给定范围求解对应的值域即可判断正误,选项D通过移向做差,化简合并,即可判断.【详解】对于A,若,则,即的最大值为1,故A正确;对于B,若,则,当且仅当,即时取等号,所以最小值为4,故B正确;对于C,若,则,即的最小值为1,故C正确;对于D,∵,,∴,故D不正确故选:D.4、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B5、D【解析】根据得到,根据题中条件,即可得出结果.【详解】由已知得,所以,又,所以,故选D.【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.6、C【解析】.故选C.7、C【解析】对于①③可证出,两条直线平行一定共面,即可判断直线与共面;对于②④可证三点共面,但平面;三点共面,但平面,即可判断直线与异面.【详解】由题意,可知题图①中,,因此直线与共面;题图②中,三点共面,但平面,因此直线与异面;题图③中,连接,则,因此直线与共面;题图④中,连接,三点共面,但平面,所以直线与异面.故选C.【点睛】本题主要考查异面直线的定义,属于基础题.8、D【解析】先求补集,再求并集.详解】,则.故选:D9、D【解析】分离常数后,用基本不等式可解.【详解】(方法1),,则,当且仅当,即时,等号成立.(方法2)令,,,.将其代入,原函数可化为,当且仅当,即时等号成立,此时.故选:D10、B【解析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.11、D【解析】根据三角函数定义求解即可.【详解】因为角的终边经过点,所以,,所以.故选:D12、A【解析】利用作为分段点进行比较,从而确定正确答案.【详解】,所以.故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、③【解析】对于①通过取特殊值即可排除,对于②③直接带入计算即可.【详解】当nA=1时,PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;B菌的个数为nB=5×104,∴,∴.又∵,∴故选③14、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题15、##【解析】由幂函数、二次函数的单调性及复合函数单调性的判断法则即可求解.【详解】解:函数的定义域为,令,,,因为函数在上单调递增,在上单调递减,在上单调递增,所以函数的单调减区间为,单调增区间为.故答案为:.16、1【解析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为1三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)证明见解析(2)【解析】(1)由定义证明即可;(2)求出在上的最大值,即可得出实数的取值范围小问1详解】任取,且,因为,所以,所以,即.所以在上为单调递增【小问2详解】任意都有成立,即.由(1)知在上为增函数,所以时,.所以实数的取值范围是.18、(1)(2)【解析】(1)由可得的值,根据正弦函数可得最值,再根据最值对应关系可得方程组,解得、的值;(2)根据正弦函数单调性可得不等式,解不等式可得函数单调区间.试题解析:(1)由函数最小正周期为,得,∴.又的最大值是,最小值是,则解得(2)由(1)知,,当,即时,单调递增,∴的单调递增区间为.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.19、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤120,x∈N∴x=100时,生产乙设备的最大年利润为2300(万元)(y1)max-(y2)max=(9900-200m)-2300=7600-200m当30≤m<38时,7600-200m>0,当m=38时,7600-200m=0,当38<m<40时,7600-200m<0,故当30≤m<38时,投资生产甲设备200台可获最大年利润;当m=38时,生产甲设备与生产乙设备均可获得最大年利润;当38<m<40时,投资生产乙设备100台可获最大年利润【点睛】考查根据实际问题抽象函数模型的能力,并能根据模型的解决,指导实际生活中的决策问题,属中档题20、(1)2;(2).【解析】(1)根据指数幂的运算法则和对数的运算性质计算即可;(2)不等式化为,根据不等式对应方程的两根写出不等式的解集【详解】(1)(2)不等式可化为,不等式对应方程的两根为,,且(其中);所以原不等式的解集为21、(1);(2)时,,时,.【解析】(1)化简即得函数,再根据函数的周期求出,即得解;(2)由题得,再根据三角函数的图像和性质即得解.【详解】解:(1)函数,因为,所以,解得,所以(2)当时,,当,即时,,当,即时,,所以,时,,时,.22、(1)证明见解析(2)【解析】(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饭店租赁合同范本
- 二零二四年度带多应用块石购销合同(石油钻采专用)
- 个人协议书范本
- 二零二四年度影视制作委托合同标的为定制广告宣传片
- 地下车位互换协议书范本(2篇)
- 因公司原因离职协议书范本(2篇)
- 双百行动协议书模板(2篇)
- 乡镇土地项目施工方案
- 二零二四年度企业间贸易与合作合同
- 砌体抹灰工程承包合同文本
- 0-3岁婴幼儿保育与教育-课件
- 最新如何进行隔代教育专业知识讲座课件
- 易栓症教学讲解课件
- (完整版)单板硬件调试报告
- 化妆师技能理论考试题库大全(汇总版、600题)
- 职业危害因素监测检测记录表
- 内照射的防护课件
- 厨房灶台灭火装置安装说明
- 2022新闻联播播报PPT通用模板
- 【课件】 我们怎样鉴赏美术作品 课件-2022-2023学年高中美术湘美版(2019)美术鉴赏
- 国家一等奖《包身工》优质课件
评论
0/150
提交评论