版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市祁阳一中2024届高一上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的零点所在的区间为A B.C. D.2.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.3.已知的图象在上存在个最高点,则的范围()A. B.C. D.4.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位5.函数定义域是A. B.C. D.6.下列集合与集合相等的是()A. B.C. D.7.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.8.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|9.已知函数,,则函数的值域为()A. B.C. D.10.函数在的图象大致为()A. B.C. D.11.函数的图象是()A. B.C. D.12.若,则值为()A. B.C. D.7二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,,则___________.14.函数的定义域是__________,值域是__________.15.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.16.经过点且在轴和轴上的截距相等的直线的方程为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(Ⅰ)当时,求在区间上的值域;(Ⅱ)当时,是否存在这样的实数a,使方程在区间内有且只有一个根?若存在,求出a的取值范围;若不存在,请说明理由18.已知函数(1)求的解析式,并证明为R上的增函数;(2)当时,且的图象关于点对称.若,对,使得成立,求实数的取值范围19.在2020年初,新冠肺炎疫情袭击全国,丽水市某村施行“封村”行动.为了更好地服务于村民,村卫生室需建造一间地面面积为30平方米且墙高为3米的长方体供给监测站.供给监测站的背面靠墙,无需建造费用,因此甲工程队给出的报价为:正面新建墙体的报价为每平方米600元,左右两面新建墙体报价为每平方米360元,屋顶和地面以及其他报价共计21600元,设屋子的左右两侧墙的长度均为x米.(1)当左右两面墙的长度为多少时,甲工程队报价最低,最低报价为多少?(2)现有乙工程队也参与此监测站建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.20.已知若,求方程的解;若关于x的方程在区间上有两个不相等的实根、:求实数k的取值范围;证明:21.已知函数为定义在R上的奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明;22.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据零点的存在性定理,依次判断四个选项的区间中是否存在零点【详解】,,,由零点的存在性定理,函数在区间内有零点,选择B【点睛】用零点的存在性定理只能判断函数有零点,若要判断有几个零点需结合函数的单调性判断2、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题3、A【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.【详解】由题可知,解得,则,故选:A【点睛】本题考查正弦函数图像的性质与周期,属于中档题.4、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.5、A【解析】根据函数成立的条件即可求函数的定义域【详解】解:要使函数有意义,则,得,即,即函数的定义域为故选A【点睛】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零.6、C【解析】根据各选项对于的集合的代表元素,一一判断即可;【详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C7、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C8、B【解析】利用向量共线定理、垂直数量积为0来综合判断.【详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B9、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B10、A【解析】根据函数解析式,结合特殊值,即可判断函数图象.【详解】设,则,故为上的偶函数,故排除B又,,排除C、D故选:A.【点睛】本题考查图象识别,注意从函数的奇偶性、单调性和特殊点函数值的正负等方面去判断,本题属于中档题.11、C【解析】由已知可得,从而可得函数图象【详解】对于y=x+,当x>0时,y=x+1;当x<0时,y=x-1.即,故其图象应为C.故选:C12、B【解析】根据两角和的正切公式,结合同角的三角函数关系式中商关系进行求解即可.【详解】由,所以,故选:B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据余弦值及角的范围,应用同角的平方关系求.【详解】由,,则.故答案为:.14、①.②.【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.15、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:16、或【解析】根据题意将问题分直线过原点和不过原点两种情况求解,然后结合待定系数法可得到所求的直线方程【详解】(1)当直线过原点时,可设直线方程为,∵点在直线上,∴,∴直线方程为,即(2)当直线不过原点时,设直线方程,∵点在直线上,∴,∴,∴直线方程为,即综上可得所求直线方程为或故答案为或【点睛】在求直线方程时,应先选择适当形式的直线方程,并注意各种形式的方程所适用的条件,由于截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时若采用截距式,应注意分类讨论,判断截距是否为零,分为直线过原点和不过原点两种情况求解.本题考查直线方程的求法和分类讨论思想方法的运用三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)先把代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数在区间内有且只有一个零点,转化为函数和的图象在内有唯一交点,根据中是否为零,分类讨论,结合函数的性质,即可求解.【详解】(Ⅰ)当时,,对称轴为:,所以函数在区间单调递减,在区间单调递增;则,所以在区间上的值域为;(Ⅱ)由,令,可得,即,令,,,函数在区间内有且只有一个零点,等价于两个函数与的图象在内有唯一交点;①当时,在上递减,在上递增,而,所以函数与的图象在内有唯一交点.②当时,图象开口向下,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,当且仅当,即,解得,所以.③当时,图象开口向上,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,,即,解得,所以.综上,存在实数,使函数于在区间内有且只有一个点.【点睛】关键点睛:本题主要考查了求一元二次函数的值域问题,以及函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数图象的交点个数问题,结合函数的性质求解是解答的关键,着重考查转化思想,以及推理与运算能力.18、(1);证明见解析.(2)【解析】(1)由求出后可得的解析式,按照增函数的定义证明即可;(2)求出函数在上的值域为,求出在上的最值,根据的最值都属于列式可求出结果.【小问1详解】依题意可得,解得,所以.证明:任取,且,则,因为,,所以,所以为R上的增函数.【小问2详解】依题意,即,当时,为增函数,,,所以在上的值域为,因为在上的最值只可能在或或处取得,所以在上的最值只可能在或或处取得,所以在上的最值只可能是或或,因为的图像关于点对称,所以在上的最值只可能是或或,所以在上的最值只可能是或或或或,若,对,使得成立,则的最值都属于,所以,即,所以,所以,又,所以.【点睛】关键点点睛:(2)中,求出在上的最值,根据题意转化为的最值都属于是解题关键.19、(1)当左右两面墙的长度为5时,报价最低为43200元;(2).【解析】(1)设甲工程队的总造价为元,推出,利用基本不等式求解最值即可;(2)由题意对任意的,恒成立.即恒成立,利用换元法以及基本不等式求解最小值即可【详解】(1)设甲工程队的总造价为元,则,当且仅当,即时等号成立即当左右两侧墙的长度为5米时,甲工程队的报价最低为43200元(2)由题意可得,对任意的,恒成立即,从而恒成立,令,,,又在,为单调增函数,故当时,所以【点睛】方法点睛:求函数的最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数;(4)基本不等式法.要根据已知条件灵活选择方法求解.20、(1)(2),见解析【解析】当时,分类讨论,去掉绝对值,直接进行求解,即可得到答案讨论两个根、的范围,结合一元二次方程根与系数之间的关系进行转化求解【详解】当时,,当时,,由,得,得舍或;当时,,由得舍;故当时,方程的解是不妨设,因为,若、,与矛盾,若、,与是单调函数矛盾,则;则…①…②由①,得:,由②,得:;的取值范围是;联立①、②消去k得:,即,即,则,,,即【点睛】本题主要考查了函数与方程的应用,根据条件判断根的范围,以及利用一元二次方程与一次方程的性质进行转化是解决本题的关键,着重考查了分析问题和解答问题的能力,试题综合性较强,属于中档试题21、(1);(2)是R上的增函数,证明详见解析.【解析】(1)由奇函数定义可解得;(2)是上的增函数,可用定义证明.【详解】(1)因为为定义在上的奇函数,所以对任意,,即,所以,因为,所以,即.(2)由(1)知,则是上的增函数,下用定义证明.任取,且,,当时,,又,所以,即,故是上的增函数.22、(1)0;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豪雅新乐学合同内容
- 工程类施工合同法条
- 2025年海口货运资格证考试口诀
- 山东能源设施建设合同
- 渔业设施个人承包施工合同
- 节能建筑招投标模板
- 运输合同中装卸义务解析
- 电子信息企业消防管理规章
- 保利影视基地招投标操作指南
- 旅游景点食堂租赁合同
- 2.0MWp屋顶太阳能分布式光伏发电项目监理大纲2
- 灌入式复合路面施工指南
- 2023级高数(上)试卷及答案
- 数控车床上下料机械手设计说明书
- 高中数学公开课优质课1.3.0探究与发现“杨辉三角”中的一些秘密【市一等奖】优质课
- 100KW分布式光伏电站设计方案
- 2010版GMP附录:计算机化系统整体及条款解读(完整精华版)
- 网吧企业章程范本
- 商业综合体、购物中心、百货商场商业运营项目收益测算模板
- 丙烯储罐毕业设计
- 水工建筑物水泥灌浆施工技术规范
评论
0/150
提交评论