版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市第九中学2023年高一数学第一学期期末注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的零点所在区间为()A.(0,) B.(,)C.(,1) D.(1,2)2.函数,则f(log23)=()A.3 B.6C.12 D.243.设命题,则为A. B.C. D.4.下列函数中,是奇函数且在区间上单调递减的是()A. B.C. D.5.函数在上最大值与最小值之和是()A. B.C. D.6.函数的图象可能是A. B.C. D.7.在中,,.若边上一点满足,则()A. B.C. D.8.命题,则命题p的否定是()A. B.C. D.9.将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向右平移个单位,得到的图象对应的解析式是A. B.C. D.10.已知a=4-5,b=log45,c=log0.45,则a,b,c的大小关系为()A.a>b>c B.c>b>aC.b>a>c D.c>a>b二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).12.密位广泛用于航海和军事,我国采用“密位制”是6000密位制,即将一个圆圈分成6000等份,每一个等份是一个密位,那么600密位等于___________rad.13.函数恒过定点________.14.已知,若,使得,若的最大值为,最小值为,则__________15.大圆周长为的球的表面积为____________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?17.如图所示,正方体的棱长为,过顶点、、截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥的高.18.已知,(1)求的值;(2)求的值19.主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线,其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)证明:为定值20.已知,.若,求的取值范围.21.已知向量,不共线,,(1)若,求k的值,并判断,是否同向;(2)若,与夹角为,当为何值时,
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】结合函数的单调性以及零点的存在性定理求得正确答案.【详解】在上递减,所以,在上递增,所以,是定义在上的减函数,,所以函数的零点在区间.故选:B2、B【解析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【详解】由题意,,所以.故选:B.3、C【解析】特称命题否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.4、C【解析】根据函数的单调性和奇偶性对各个选项逐一分析即可.【详解】对A,函数的图象关于轴对称,故是偶函数,故A错误;对B,函数的定义域为不关于原点对称,故是非奇非偶函数,故B错误;对C,函数的图象关于原点对称,故是奇函数,且在上单调递减,故C正确;对D,函数的图象关于原点对称,故是奇函数,但在上单调递增,故D错误.故选:C.5、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.6、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:7、A【解析】根据向量的线性运算法则,结合题意,即可求解.【详解】由中,,且边上一点满足,如图所示,根据向量的线性运算法则,可得:.故选:A.8、A【解析】全称命题的否定是特称命题,并将结论加以否定.【详解】因为命题,所以命题p的否定是,故选:A.9、D【解析】横坐标伸长倍,则变为;根据左右平移的原则可得解析式.【详解】横坐标伸长倍得:向右平移个单位得:本题正确选项:【点睛】本题考查三角函数图象平移变换和伸缩变换,关键是能够明确伸缩变换和平移变换都是针对于的变化.10、C【解析】根据指数函数、对数函数的单调性,判断的大致范围,即可比较大小.【详解】因为,且,故;又,故;又,故;故.故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:12、【解析】根据周角为,结合新定义计算即可【详解】解:∵圆周角为,∴1密位,∴600密位,故答案为:13、【解析】根据函数图象平移法则和对数函数的性质求解即可【详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,因为的图象恒过定点,所以恒过定点,故答案为:14、【解析】作出函数的图像,计算函数的对称轴,设,数形结合判断得时,取最小值,时,取最大值,再代入解析式从而求解出另外两个值,从而得和,即可求解.【详解】作出函数的图像如图所示,令,则函数的对称轴为,由图可知函数关于,,对称,设,则当时,取最小值,此时,可得,故;当时,取最大值,此时,可得,故,所以.故答案为:【点睛】解答该题的关键是利用数形结合,利用三角函数的对称性与周期性判断何时取得最大值与最小值,再代入计算.15、【解析】依题意可知,故求得表面积为.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)4万件【解析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;小问2详解】解:当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13(万元).所以当工厂生产4万件产品时,可使盈利最多为13万元.17、(1);(2).【解析】(1)由题意,正方体的几何结构特征,结合棱锥和正方体的体积公式,即可求解;(2)由(1),结合,即可求解.【详解】(1)由题意,正方体的棱长为,则正方体的体积为,根据三棱锥的体积公式,可得,所以剩余部分的体积.(2)由(1)知,设三棱锥的高为,则,故,解得.【点睛】求空间几何体的表面积与体积的求法:(1)公式法:对于规则的几何体的表面积和体积,可直接利用公式进行求解;(2)割补法:把不规则的图形分割成规则的图形,然后进行体积的计算,或不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算;(3)等体积法:等体积法也称积转化或等积变形,通过选择合适的底面来求几何体体积的一种方法,多用来解决锥体的体积,特别时三棱锥的体积.18、(Ⅰ);(Ⅱ)【解析】解:(Ⅰ)由sin﹣2cos=0,得tan=2∴tanx=;(Ⅱ)===(﹣)+1=19、(1);(2)证明见解析.【解析】(1)首先根据振幅为2求出A,将点(1,-2)代入解析式即可解得;(2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A>0,∴A=2,,将点(1,-2)代入得:,∵,∴,∴,∴,易知与关于x轴对称,所以.(2)由(1).即定值为0.20、.【解析】利用对函数数的性质化简,利用一元二次不等式的解法,讨论,,三种情况,分别分析集合,再结合,解得的取值范围【详解】由,得,解得,即,由,得,当时,是空集,不满足,不符合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版办公家具展会租赁与销售合作合同3篇
- 二零二五年度武汉东湖风景区旅游开发合同3篇
- 二零二五年度艺术品共同创作与展览合同2篇
- 二零二五版房屋租赁合同免责及维修保障3篇
- 二零二五版灯光照明工程设计咨询合同2篇
- 二零二五版班组分包消防设施分包服务合同样本3篇
- 二零二五版新媒体行业劳动合同制度及知识产权保护协议2篇
- 二零二五年空调销售与绿色消费倡导合同3篇
- 二零二五年度钢管模板租赁环保要求及价格评估合同3篇
- 二零二五版网络安全威胁情报共享与预警服务合同范本3篇
- 2025-2030年中国糖醇市场运行状况及投资前景趋势分析报告
- 八年级散文阅读专题训练-八年级语文上册知识梳理与能力训练
- 2024年杭州市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024-2025学年人教版八年级数学上册期末测试模拟试题(含答案)
- 《环境感知技术》2024年课程标准(含课程思政设计)
- GB/T 45079-2024人工智能深度学习框架多硬件平台适配技术规范
- 2024年安徽省铜陵市公开招聘警务辅助人员(辅警)笔试自考练习卷二含答案
- 国家安全教育高教-第六章坚持以经济安全为基础
- 水处理药剂采购项目技术方案(技术方案)
- 2024年城市环卫一体化服务合同
- 工地春节安全培训
评论
0/150
提交评论