江西省赣州市崇义中学2023年高一数学第一学期期末复习检测试题含解析_第1页
江西省赣州市崇义中学2023年高一数学第一学期期末复习检测试题含解析_第2页
江西省赣州市崇义中学2023年高一数学第一学期期末复习检测试题含解析_第3页
江西省赣州市崇义中学2023年高一数学第一学期期末复习检测试题含解析_第4页
江西省赣州市崇义中学2023年高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市崇义中学2023年高一数学第一学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.3.设函数f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()对一切x∈R恒成立,则下列结论中正确的是()A.B.点是函数的一个对称中心C.在上是增函数D.存在直线经过点且与函数的图象有无数多个交点4.设,,定义运算“△”和“”如下:,.若正数,,,满足,,则()A.△,△ B.,C.△, D.,△5.已知集合,则(

)A. B.C. D.6.已知定义在上的偶函数,在上为减函数,且,则不等式的解集是()A. B.C. D.7.设,,,则下列正确的是()A. B.C. D.8.函数的零点是A. B.C. D.9.函数f(x)=+的定义域为()A. B.C. D.10.设是周期为的奇函数,当时,,则A. B.C. D.11.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.半径为3cm的圆中,有一条弧,长度为cm,则此弧所对的圆心角为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.的定义域为________________14.已知函数的图象(且)恒过定点P,则点P的坐标是______,函数的单调递增区间是__________.15.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201216.已知向量,,,,则与夹角的余弦值为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a18.已知,均为锐角,且,是方程的两根.(1)求的值;(2)若,求与的值.19.已知是同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与的夹角为,求的值20.(1)一个半径为的扇形,若它的周长等于,那么扇形的圆心角是多少弧度?扇形面积是多少?(2)角的终边经过点P(,4)且cos=,则的值21.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间22.在平面直角坐标系中,已知角α的始边为x轴的非负半轴,终边经过点P(-,)(Ⅰ)求cos(α-π)的值;(Ⅱ)若tanβ=2,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据充分条件、必要条件的概念求解即可.【详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A2、A【解析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.3、D【解析】根据f(x)≥f()对一切x∈R恒成立,那么x=取得最小值.结合周期判断各选项即可【详解】函数f(x)=asinx+bcosx=周期T=2π由题意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正确;x=取得最小值,那么+=就是相邻的对称中心,∴点(,0)不是函数f(x)的一个对称中心;因为x=取得最小值,根据正弦函数的性质可知,f(x)在是减函数故选D【点睛】本题考查三角函数的性质应用,排除法求解,考查转化思想以及计算能力4、D【解析】根据所给运算,取特殊值检验即可排除ACB,得到答案.【详解】令满足条件,则,可排除A,C;令满足。则,排除B;故选:D5、B【解析】直接利用两个集合的交集的定义求得M∩N【详解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},则M∩N={x|-1≤x<2},故选B【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题6、D【解析】根据函数的性质,画出函数的图象,数形结合求出解集【详解】由题意,画出的图象如图,等价于,或,由图可知,不等式的解集为故选:D7、D【解析】计算得到,,,得到答案.【详解】,,.故.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.8、B【解析】函数y=x2-2x-3的零点即对应方程的根,故只要解二次方程即可【详解】由y=x2-2x-3=(x-3)(x+1)=0,得到x=3或x=-1,所以函数y=x2-2x-3的零点是3和-1故选B【点睛】本题考查函数的零点的概念和求法.属基本概念、基本运算的考查9、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.10、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.11、B【解析】根据充分必要性分别判断即可.【详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.12、A【解析】利用弧长公式计算即可【详解】,故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.14、①.②.【解析】令,求得,即可得到函数的图象恒过定点;令,求得函数的定义域为,利用二次函数的性质,结合复合函数的单调性的判定方法,即可求解.【详解】由题意,函数(且),令,即,可得,即函数的图象恒过定点,令,即,解得,即函数的定义域为,又由函数的图象开口向下,对称轴的方程为,所以函数在上单调递增,在上单调递减,结合复合函数的单调性的判定方法,可得函数的递增区间为.故答案为:;.15、【解析】根据表格从里层往外求即可.【详解】解:由表可知,.故答案为:.16、【解析】运用平面向量的夹角公式可解决此问题.【详解】根据题意得,,,,故答案为.【点睛】本题考查平面向量夹角公式的简单应用.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)A=2,8,(2)∁(3)2,+∞【解析】(1)根据函数y=log8x和函数y=(2)先求出集合A与集合B的交集,再求补集即可(3)根据集合∁和集合A的交集为空集,可直接求出a的取值范围【小问1详解】根据题意,可得:log8813≤log故有:A=函数y=2x在区间-∞,+∞综上,答案为:A=2,8,【小问2详解】由(1)可知:A=2,8,则有:A∩B=故有:∁故答案为:-∞,2【小问3详解】由于A=x2≤x≤8,且A∩C≠∅则有:a>2,故a的取值范围为:2,+∞故答案为:2,+∞18、(1)(2);【解析】(1)利用韦达定理求出,再根据两角和的正切公式即可得解;(2)求出,再根据二倍角正切公式即可求得,化弦为切即可求出.【小问1详解】解:因为,均为锐角,且,是方程的两根,所以,所以;【小问2详解】因为,均为锐角,,所以,所以,所以,.19、(1)或(2)【解析】(1)由可设,再由可得答案(2)由数量积的定义可得,代入即可得答案【详解】解:(1)由可设,∵,∴,∴,∴或(2)∵与的夹角为,∴,∴【点睛】本题考查向量的基本运算,属于简单题20、(1),(2)【解析】(1)设弧长为,所对圆心角为,则=,即=因为所以的弧度数是,从而(2)角的终边经过点P(,4),所以,所以.所以原式=21、(1)最小正周期为T=π,最大值为(2)[kπ-58π,kπ【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论