版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省示范初中2024届数学高一上期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,612.在一段时间内,若甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,且甲乙两人各自行动.则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.48 B.0.32C.0.92 D.0.843.已知为角终边上一点,则()A. B.1C.2 D.34.已知,,,则()A. B.C. D.5.,,这三个数之间的大小顺序是()A. B.C. D.6.已知,且满足,则值A. B.C. D.7.角终边经过点,那么()A. B.C. D.8.sin210°·cos120°的值为()A. B.C. D.9.下列函数中与函数相等的是A. B.C. D.10.下列函数中,以为最小正周期且在区间上单调递减的是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若向量,,且,则_____12.函数且的图象恒过定点__________.13.如图所示,正方体的棱长为,分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为___________.14.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.15.不等式x2-5x+6≤0的解集为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知幂函数在上为增函数.(1)求实数的值;(2)求函数的值域.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时(尾/立方米)时,的值为2(千克/年);当时,是的一次函数;当(尾/立方米)时,因缺氧等原因,的值为0(千克/年).(1)当时,求函数的表达式;(2)当为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.18.已知函数(R).(1)当取什么值时,函数取得最大值,并求其最大值;(2)若为锐角,且,求的值.19.已知函数.(1)求函数的最小正周期及其单调递减区间;(2)若,是函数的零点,不写步骤,直接用列举法表示的值组成的集合.20.(1)计算:;(2)计算:21.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B2、C【解析】根据题意求得甲乙都不去参观博物馆的概率,结合对立事件的概率计算公式,即可求解.【详解】由甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,可得甲乙都不去参观博物馆的概率为,所以甲乙两人至少有一个去参观博物馆的概率是.故选:C.3、B【解析】先根据三角函数的定义求出,再利用齐次化将弦化切进行求解.【详解】为角终边上一点,故,故.故选:B4、B【解析】分析】由指数函数和对数函数单调性,结合临界值可确定大小关系.【详解】,.故选:B.5、C【解析】利用指数函数和对数函数的性质比较即可【详解】解:因为在上为减函数,且,所以,因为在上为增函数,且,所以,因为在上为增函数,且,所以,综上,,故选:C6、C【解析】由可求得,然后将经三角变换后用表示,于是可得所求【详解】∵,∴,解得或∵,∴∴故选C【点睛】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力7、C【解析】利用任意角的三角函数的定义,求得和的值,可得的值【详解】解:角终边上一点,,,则,故选:8、A【解析】直接诱导公式与特殊角的三角函数求解即可.【详解】,故选:A.9、C【解析】对于选项A,D对应的函数与函数的对应法则不同,对于选项B对应的函数与函数的定义域不同,对于选项C对应的函数与函数的定义域、对应法则相同,得解.【详解】解:对于选项A,等价于,即A不符合题意,对于选项B,等价于,即B不符合题意,对于选项C,等价于,即C符合题意,对于选项D,,显然不符合题意,即D不符合题意,故选C.【点睛】本题考查了同一函数的判断、函数的对应法则及定义域,属基础题.10、B【解析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案.【详解】解:对于A,函数的最小正周期为,不符合题意;对于B,函数的最小正周期为,且在区间上单调递减,符合题意;对于C,函数的最小正周期为,且在区间上单调递增,不符合题意;对于D,函数的最小正周期为,不符合题意.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、6【解析】本题首先可通过题意得出向量以及向量的坐标表示和向量与向量之间的关系,然后通过向量平行的相关性质即可得出结果。【详解】因为,,且,所以,解得。【点睛】本题考查向量的相关性质,主要考查向量平行的相关性质,若向量,,,则有,锻炼了学生对于向量公式的使用,是简单题。12、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.13、①②④【解析】①连接,在正方体中,平面,所以平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④考点:面面垂直及几何体体积公式14、##-0.5【解析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【详解】由题设,,,令,可得,即,,所以,,则.故答案为:15、【解析】根据二次函数的特点即可求解.【详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)解方程再检验即得解;(2)令,再求函数的值域即得解.【小问1详解】解:由题得或.当时,在上为增函数,符合题意;当时,在上为减函数,不符合题意.综上所述.【小问2详解】解:由题得,令,抛物线的对称轴为,所以.所以函数的值域为.17、(1)(2),鱼的年生长量可以达到最大值12.5【解析】(1)根据题意得建立分段函数模型求解即可;(2)根据题意,结合(1)建立一元二次函数模型求解即可.【小问1详解】解:(1)依题意,当时,当时,是的一次函数,假设且,,代入得:,解得.所以【小问2详解】解:当时,,当时,所以当时,取得最大值因为所以时,鱼的年生长量可以达到最大值12.5.18、(1)Z)时,函数f(x)取得最大值,其值为.(2).【解析】(1)由倍角公式,辅助角公式,化简f(x),利用三角函数的图像和性质即可得解.(2)把代入f(x)的解析式得f()的解析式,可求得,进而求得.【详解】(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x,,∴当,即Z)时,函数f(x)取得最大值,其值为(2)∵,∴∴∵θ为锐角,∴.∴【点睛】本题主要考查三角函数性质,同角三角函数的基本关系等知识,考查运算求解能力,属于中档题19、(1)的最小正周期为,单调递减区间是(2)【解析】(1)根据正弦函数的最小正周期公式计算可得,根据正弦函数的单调性求出函数的单调区间.(2)先求出函数的零点,是或中的元素,在分类讨论计算可得.【小问1详解】的最小正周期为:对于函数,当时,单调递减,解得所以函数的单调递减区间是;【小问2详解】因,即所以函数的零点满足:或即或所以是或中的元素当时,则当(或,)时,则当,则所以的值的集合是20、(1);(2).【解析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【详解】(1)原式=8+0.1+1=9.1(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影项目委托协议书
- 2025年度生态旅游区个人山林承包管理协议书范本4篇
- 人教版小学五年级美术下册教案+教学分析
- 2025年度个人宠物医疗无抵押借款协议标准3篇
- 2025年个人房产买卖合同(含专业评估报告)
- 2025-2030全球过热过载保护器行业调研及趋势分析报告
- 2025-2030全球OLED图形显示模块行业调研及趋势分析报告
- 2025-2030全球工程用行星减速机行业调研及趋势分析报告
- 2025-2030全球曲轴现场加工行业调研及趋势分析报告
- 2024年农村文化建设知识竞赛试题及答案
- 乳腺癌的综合治疗及进展
- 【大学课件】基于BGP协议的IP黑名单分发系统
- 2025年八省联考高考语文试题真题解读及答案详解课件
- 信息安全意识培训课件
- 2024年山东省泰安市初中学业水平生物试题含答案
- 美的MBS精益管理体系
- 中国高血压防治指南(2024年修订版)解读课件
- 2024安全员知识考试题(全优)
- 2024年卫生资格(中初级)-中医外科学主治医师考试近5年真题集锦(频考类试题)带答案
- 中国大百科全书(第二版全32册)08
- 第六单元 中华民族的抗日战争 教学设计 2024-2025学年统编版八年级历史上册
评论
0/150
提交评论