湖南省邵东县创新实验学校2024届高一上数学期末质量跟踪监视模拟试题含解析_第1页
湖南省邵东县创新实验学校2024届高一上数学期末质量跟踪监视模拟试题含解析_第2页
湖南省邵东县创新实验学校2024届高一上数学期末质量跟踪监视模拟试题含解析_第3页
湖南省邵东县创新实验学校2024届高一上数学期末质量跟踪监视模拟试题含解析_第4页
湖南省邵东县创新实验学校2024届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵东县创新实验学校2024届高一上数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.定义在实数集上的奇函数恒满足,且时,,则()A. B.C.1 D.2.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx3.已知点P3,-4是角α的终边上一点,则sinA.-75C.15 D.4.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则A. B.C. D.5.下列函数中,既是奇函数又在区间上是增函数的是()A. B.C. D.6.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.7.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.58.已知奇函数fx在R上是增函数,若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b9.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是A. B.C. D.10.已知,则函数()A. B.C. D.11.已知,则的取值范围是()A. B.C. D.12.已知函数,的最值情况为()A.有最大值,但无最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.无最大值,也无最小值二、填空题(本大题共4小题,共20分)13.若,记,,,则P、Q、R的大小关系为______14.已知函数在区间是单调递增函数,则实数的取值范围是______15.不等式的解集为_____________.16.某工厂生产的产品中有正品和次品,其中正品重/个,次品重/个.现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品.将这10袋产品从1~10编号,从第i号袋中取出i个产品,则共抽出______个产品;将取出的产品一起称重,称出其重量,则次品袋的编号为______.三、解答题(本大题共6小题,共70分)17.设有一条光线从射出,并且经轴上一点反射.(1)求入射光线和反射光线所在的直线方程(分别记为);(2)设动直线,当点到的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.18.已知二次函数满足(1)求的最小值;(2)若在上有两个不同的零点,求的取值范围19.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.20.已知集合,,.(1)当时,求;(2)当时,求实数的值.21.已知.(1)若为锐角,求的值.(2)求的值.22.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据函数奇偶性和等量关系,求出函数是周期为4的周期函数,利用函数的周期性进行转化求解即可【详解】解:奇函数恒满足,,即,则,即,即是周期为4的周期函数,所以,故选:B2、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.3、A【解析】利用三角函数的定义可求得结果.【详解】由三角函数的定义可得sinα-故选:A.4、A【解析】由三角函数定义得tan再利用同角三角函数基本关系求解即可【详解】由三角函数定义得tan,即,得3cos解得或(舍去)故选A【点睛】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题5、B【解析】先由函数定义域,排除A;再由函数奇偶性排除D,最后根据函数单调性,即可得出B正确,C错误.【详解】A选项,的定义域为,故A不满足题意;D选项,余弦函数偶函数,故D不满足题意;B选项,正切函数是奇函数,且在上单调递增,故在区间是增函数,即B正确;C选项,正弦函数是奇函数,且在上单调递增,所以在区间是增函数;因此是奇函数,且在上单调递减,故C不满足题意.故选:B.【点睛】本题主要考查三角函数性质的应用,熟记三角函数的奇偶性与单调性即可,属于基础题型.6、D【解析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.7、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.8、C【解析】由题意:a=f-且:log2据此:log2结合函数的单调性有:flog即a>b>c,c<b<a.本题选择C选项.【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.9、A【解析】先判断函数为偶函数,且在上单调递增,再依次判断每个选项的奇偶性和单调性得到答案.【详解】易知:函数为偶函数,且在上单调递增A.,函数为偶函数,且当时单调递增,满足;B.为偶函数,且当时单调递减,排除;C.函数为奇函数,排除;D.,函数为非奇非偶函数,排除;故选:【点睛】本题考查了函数的单调性和奇偶性,意在考查学生对于函数性质的综合应用.10、A【解析】根据,令,则,代入求解.【详解】因为已知,令,则,则,所以,‘故选:A11、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B12、C【解析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案.【详解】由题意,函数,可得函数在区间上单调递增,所以当时,函数取得最小值,最小值为,当时,函数取得最小值,最小值为,故选C.【点睛】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:14、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:15、【解析】将不等式转化为,利用指数函数的单调性求解.【详解】不等式为,即,解得,所以不等式的解集为,故答案为:16、①.55②.8【解析】将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,得到取出的次品的个数为8个,进而能求出次品袋的编号【详解】某工厂生产的产品中有正品和次品,其中正品重个,次品重个现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,取出的次品的个数为8个,则次品袋的编号为8故答案为:55;8三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)由入射光线与反射光线的关系可知关于轴对称故斜率互为相反数(2)∵恒过点,∴作于,则,∴当时最大.即,时点到的距离最大.设所围三角形的内切圆的方程为,则,解得试题解析:(1)∵,∴.∴入射光线所在的直线的方程为.∵关于轴对称,∴反射光线所在的直线的方程为.(2)∵恒过点,∴作于,则,∴当时最大.即,时点到的距离最大.∵,∴,∴的方程为.设所围三角形的内切圆的方程为,则,解得(或舍去),∴所求的内切圆方程为.18、(1)(2)【解析】(1)根据函数的对称性可得出,再由均值不等式求解即可;(2)根据零点的分布列出不等式组求解即可.【小问1详解】因为满足,所以化简得因为对任意恒成立,所以,即,当且仅当时,等号成立所以当时,取得最小值为【小问2详解】由(1)知.对称轴方程为,因为在上有两个不同的零点,所以解得所以ab的取值范围是19、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.20、(1)或;(2).【解析】(1)可以求出,时,可以求出,然后进行补集、交集的运算即可;(2)根据即可得出,是方程的实数根,带入方程即可求出.【详解】(1),时,;或;或;(2);是方程的一个实根;,.【点睛】本题主要考查不等式的性质,描述法的定义,一元二次不等式的解法,交集、补集的运算,以及一元二次不等式的解和对应一元二次方程的实根的关系,属于基础题.21、(1)(2)【解析】(1)根据题意和求得,结合两角和的余弦公式计算即可;(2)根据题意和可得,利用二倍角的正切公式求出,结合两角和的正切公式计算即可.【小问1详解】由,为锐角,,得,∴;【小问2详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论