黑龙江省海林市朝鲜族中学2024届高一上数学期末教学质量检测试题含解析_第1页
黑龙江省海林市朝鲜族中学2024届高一上数学期末教学质量检测试题含解析_第2页
黑龙江省海林市朝鲜族中学2024届高一上数学期末教学质量检测试题含解析_第3页
黑龙江省海林市朝鲜族中学2024届高一上数学期末教学质量检测试题含解析_第4页
黑龙江省海林市朝鲜族中学2024届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省海林市朝鲜族中学2024届高一上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A. B.C. D.2.命题“且”是命题“”的()条件A.充要 B.充分不必要C.必要不充分 D.既不充分也不必要3.下列函数是偶函数的是A. B.C. D.4.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.5.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}6.“”是“”的()条件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要7.函数的定义域为()A.B.且C.且D.8.,,,则()A. B.C. D.9.管理人员从一池塘内随机捞出40条鱼,做上标记后放回池塘.10天后,又从池塘内随机捞出70条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内鱼的总条数是()A.2800 B.1800C.1400 D.120010.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.2292二、填空题:本大题共6小题,每小题5分,共30分。11.已知,写出一个满足条件的的值:______12.已知,则_______.13.给出下列五个论断:①;②;③;④;⑤.以其中的两个论断作为条件,一个论断作为结论,写出一个正确的命题:___________.14.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________15.函数f(x)=log2(x2-5),则f(3)=______16.已知集合,,且,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.根据下列条件,求直线的方程(1)求与直线3x+4y+1=0平行,且过点(1,2)的直线l的方程.(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.已知,求的值.19.在①;②关于x的不等式的解集是这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分(1)已知______,求关于的不等式的解集;(2)在(1)的条件下,若非空集合,,求实数的取值范围20.已知.(1)化简;(2)若是第二象限角,且,求的值.21.设函数是定义域为R的奇函数.(1)求;(2)若,求使不等式对一切恒成立的实数k的取值范围;(3)若函数的图象过点,是否存在正数,使函数在上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用诱导公式,化简条件及结论,再利用二倍角公式,即可求得结论【详解】解:∵sin,∴sin,∵sinsincos(2α)=1﹣2sin21故选B【点睛】本题考查三角函数的化简,考查诱导公式、二倍角公式的运用,属于基础题2、A【解析】将化为,求出x、y值,根据充要条件的定义即可得出结果.【详解】由,可得,解得x=1且y=2,所以“x=1且y=2”是“”的充要条件.故选:A.3、C【解析】函数的定义域为所以函数为奇函数;函数是非奇非偶函数;函数的图象关于y轴对称,所以该函数是偶函数;函数的对称轴方程为x=−1,抛物线不关于y轴对称,所以该函数不是偶函数.故选C.4、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可5、A【解析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),选A考点:本题主要考查集合概念,集合的表示方法和并集运算.6、B【解析】根据充分条件和必要条件的概念,结合题意,即可得到结果.【详解】因为,所以“”是“”的必要不充分条件.故选:B.7、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C8、B【解析】根据对数函数和指数函数的单调性即可得出,,的大小关系【详解】,,,故选:9、C【解析】由从池塘内捞出70条鱼,其中有标记的有2条,可得所有池塘中有标记的鱼的概率,结合池塘内具有标记的鱼一共有40条鱼,按照比例即得解.【详解】设估计该池塘内鱼的总条数为,由题意,得从池塘内捞出70条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:,又因为池塘内具有标记的鱼一共有40条鱼,所以,解得,即估计该池塘内共有条鱼故选:C10、A【解析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】利用,可得,,计算即可得出结果.【详解】因为,所以,则,或,故答案为:(答案不唯一)12、【解析】将条件平方可得答案.【详解】因为,所以,所以故答案为:13、②③⇒⑤;③④⇒⑤;②④⇒⑤【解析】利用不等式的性质和做差比较即可得到答案.【详解】由②③⇒⑤,因为,,则.由③④⇒⑤,由于,,则,所以.由②④⇒⑤,由于,且,则,所以.故答案为:②③⇒⑤;③④⇒⑤;②④⇒⑤14、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:15、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题16、【解析】,是的子集,故.【点睛】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3x+4y-11=0(2)3x-y+2=0【解析】(1)设与直线平行的直线为,把点代入,解得即可;(2)由,解得两直线的交点坐标为,结合所求直线垂直于直线,可得所求直线斜率,利用点斜式即可得出.【详解】(1)由题意,设l的方程为3x+4y+m=0,将点(1,2)代入l的方程3+4×2+m=0,得m=-11,∴直线l的方程为3x+4y-11=0;(2)由,解得,两直线的交点坐标为,因为直线的斜率为所求直线垂直于直线,所求直线斜率,所求直线方程为,化为.【点睛】本题主要考查直线的方程,两条直线平行、垂直与斜率的关系,属于中档题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1);(2).18、【解析】首先根据正切两角和公式得到,再利用诱导公式和二倍角公式化简得到,再分子、分母同除以求解即可.【详解】因为,解得.所以.19、(1)条件选择见解析,或(2)【解析】(1)若选①,分和,求得a,再利用一元二次不等式的解法求解;若选②,根据不等式的解集为,求得a,b,再利用一元二次不等式的解法求解;(2)由,得到求解;【小问1详解】解:若选①,若,解得,不符合条件若,解得,则符合条件将代入不等式并整理得,解得或,故或若选②,因为不等式的解集为,所以,解得将代入不等式整理得,解得或故或【小问2详解】∵,∴,又∵,∴或,∴或,∴20、(1);(2).【解析】(1)根据诱导公式对进行化简即可(2)先由求得,再根据(1)的结论及同角三角函数关系式求解【详解】(1)(2),,∵是第二象限角,∴,【点睛】本题考查利用诱导公式进行化简,涉及利用同角三角函数关系由正弦值求余弦值,属综合基础题.21、(1)(2)(3)【解析】(1)根据是定义域为R的奇函数,由求解;(2),得到b的范围,从而得到函数的单调性,将对一切恒成立,转化为对一切恒成立求解;(3)根据函数的图象过点,求得b,得到,令,利用复合函数求最值的方法求解.【小问1详解】解:函数是定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论